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If a finite, undirected graph is the intersection graph of a set

of intervals of the line, it is called an interval graph and the set

of intervals is called a representation of the graph. Let I(G) be the

set of all representations of an interval graph G in which all of the

endpoints of the intervals are distinct.

The set 1(G) is divided into a finite number of equivalence

classes, called chronological orderings of G, which correspond to the

possible relative positions of the intervals in representations of the

graph. Consideration of these classes leads to new characterizations

of interval graphs, and to algorithms, with worst-case time-complexity

O(n 3) where n is the number of vertices of the graph, for solving

problems concerning special representations of interval graphs. Such

problems include: (1) determining whether a graph has a representation

in which certain intervals are properly contained in [extend to the

left or right of, are completely to the left or right of) others, and

(2) determining whether a graph has a representation in which certain

intervals contain given points of the line.

These results are applied to proper interval graphs and proper

circular arc graphs, yielding new characterizations of each and

displaying an interesting relationship among proper interval graphs,



comparability graphs, triangulated graphs, and a set of graphs called

nested interval graphs.

The dissertation concludes with a characterization of interval

edge-graphs and a few NP-completeness results.
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CHAPTER 1: INTRODUCTION

The sutject of interval graphs has been studied for only a little

more than 20 years. Such graphs were first mentioned in 1957 by Haj6s

[15], and were first studied by Benzer [2; 3) because of their

application to his work in molecular genetics. Since then, this

subject has been an active area of research. See Golumbic [12,

Chapters 1 and 8] and Roberts [6, pp. 111-140] for surveys of the many

applications of interval graphs that have arisen.

This dissertation is concerned with the possible relative

positions of the intervals in a representation of an interval graph.

The results presented here partially answer questions raised by Roberts

[26, pp. 118-120) concerning the application of interval graphs to

archaeological seriation or sequence dating.

1.1 Notation

Our notation for chapters 1-7 will follow that of Golumbic [12 or

13). A graph (V, E) consists of a finite set V of vertices and an

irreflexive relation E on V. The elements of E are called

edges and can be thought of as ordered pairs of distinct vertices.

Therefore, our graphs have no loops or multiple edges. We define the

relation E by letting ab c E iff ba e E, and define

E = E u E. A graph (V, E), or a set of edges E, is said to be

undirected if E = E and is said to be oriented if E n E = 0

When we wish to emphasize that a graph is not necessarily oriented

or undirected, we will call it mixed.

A graph (V', E) is a subgraph of (V, E) if V1 c V and

E' c E. (V', E') is called an induced subgraph if
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E'= {ab: a,b V' and ab c El.

Let VkV denote the irreflexive complete relation on V, i.e.,

VkV {ab: a, beV and a b).

A graph V, E) is complete if E = VAV, and a subgraph (V', E') of

a graph G is called a clique of G if (V', E') is complete.

An orientation of a graph (V, E), or of E, is a relation

T c E such that T n T l = 0 and T + T = E (here "+' will always

denote the union of mutually disjoint sets or relations). Thus T

contains all ab e E for which ba J E, and contains ab or ba

(but not both) if {ab, ba} c E.

A relation T is said to be transitive if T2 c T, where

2T = {xy: xz, zy c T for some z).

A linear (or total) ordering T of a set V is a relation which
satisfies T2 c T, M = V*V, and Tn T- =0. Thus a linear ordering

of V is just a transitive orientation of the complete graph on V.

A path in (V, E) consists of a sequence of distinct vertices

[vl,..., vk] such that v i vi+ l e E for I = I,..., k-l. A cycle (or

circuit) is a path [vl ,..., vk]  in which vkvl e E. A chordless path

(or cycle) is one for which no other pairs of vertices are joined by

an edge. The qraph induced by a chordless cycle of m vertices is

denoted by Cm* A graph without any cycles is called acyclic.

For a vertex xcV, define

N(x) (or NG(X)) {yV: y x, yx c E, or xy e E).
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This is the neighborhood of x. Let the open neighborhood ON(x) =

N(x)\{x}.

From here until the end of Chapter 7, except for the last section

of Chapter 4, we will reserve the letter E to be an undirected set

of edges, i.e., ab c E <=> ba e E. Furthermore V will always be

denoted by {Vl,.. vn) and so n will henceforth be the cardinality

Ivi of V.

When describing an algorithm, we will say that it has (worst-case)

complexity O(p(m)) for some function p, if there exists a constant

k > 0 such that, for all inputs of "size" m, the number of

computational steps the algorithm requires before it halts is at most

kp(m). The "size" of a graph (V, E) will usually be IVI + IEI or

just IVI, and the notion of step should be interpreted in terms of

the RAM model of random access computation with the uniform cost

criterion, as defined by Aho et al. [1, pp. 5-14].

1.2 Interval Graphs

An (undirected)graph G = (V, E) is called an interval graph

if there exists a set of closed intervals {I1,..., In} of the real

line such that, for i # j,

vivj e E <=> II n I # 0.

The set of intervals is called an (interval) representation of G.

Thus G is an interval graph iff it has an interval representation.

There are several characterizations of interval graphs, three

of which will be described here in some detail because they will be
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used in the proofs of some of the results of this paper.

In our figures, vertices are drawn as small circles. A line with-

out an arrow connecting vertices a and b indicates that ab and

ba are edges. A line with an arrow pointing from a to b indicates

that ab is an edge.

Lekkerkerker and Boland first characterized interval graphs in

terms of forbidden subgraphs.

Theorem 1.1 (Lekkerkerker and Boland [24])

A graph (V, E) is an interval graph iff it does not contain an

induced subgraph which is I, II, III,, IVn, V. shown in Figure I.I.

IIII I n points, nb4

IVn , n+4 points, nb2 V, n+5 points, nal

n n
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To present the next characterization, we first give some

definitions. A clique is called maximal if it is not properly

contained in any other clique. If a graph G has exactly m distinct

maximal cliques {K,,..., Km}, then we can construct the m x n

maximal clique-vertex incidence matrix M = (mij) by defining

m I if v is a vertex of K1miJ 0 otherwise.

Thus the rows correspond to the maximal cliques and the columns to the

vertices of V.

A matrix of O's and l's is said to have the consecutive ones

property if the order of the rows can be permuted so that the I

entries are arranged consecutively in each column (see Figure 1.2).

1 0 0 1 1 1 00 1 0 0 0

A 1 1 0 0 B 1 0 0 0 C 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0

0 0 1 1 1 0 0 11 0 0 1 1

Figure 1.2: Consecutive ones property. Matrix A does not have
the consecutive ones property but matrix B does. Interchanging the
first two rows of B yields matrix C, which has consecutive l's in
each column.

Theorem 1.2 (Fulkerson and Gross [9])

An undirected graph is an interval graph iff its maximal clique-vertex

incidence matrix has the consecutive ones property.
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The following construction shows the sufficiency half of the proof.

Suppose the rows of the matrix are arranged so that the I's in each

column are consecutive. If the first 1 in column j is in the a-th

row and the last I in the b-th row, then represent vertex vj by the

interval Ij= [a, b]. Repeat this for every column. It is not hard

to see that {If,..., In } is a representation of G. For examples of

this, see Figuresl.3 and 6.1.

V3  V 2 v3 v4 v5

Vl v M K 1 B1 0 0 l
M v4 2 0 1 1 0 1

v 5 K 2 0 0 1 1 1
K

The vertices of the
maximal cliques of G: The matrix M has consecutive ones and
Kl: {VV2,V5 yields the following representation
K: {vv 2 fv 51 of G: {Il = [1,1], 12 = [1,2],
K2 : {v3 'v4,v51 13 = [2,3], 14 = [3,3],

K3: {v2 'v3,V5) 15 = [1,3]}.

Figure 1.3: A representation of a graph.

A third characterization of interval graphs concerns the

complementary graph Gc = (V, Ec) of G, where

Ec ( ab: a, bcV, a t b, and ab E}.

For intervals Il and I, we write I < I to mean x < y

for all x c I and y c I.

i J *I. . . .. . .. Il l i i , , . . .. . . ..
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Theorem 1.3 (Gilmore and Hoffman [111)

An undirected graph G is an interval graph iff C4  is not an induced

subgraph of G and there exists a transitive orientation TC of Gc.

Furthermore, if this is the case, then G has a representation

{If,... In} such that vivj ETC <=> I <I J

Some other concepts that arise are proper interval graphs (graphs

which have representations in which no interval is properly contained

in another) and unit interval graphs (graphs which have representations

consisting of unit intervals).

The following theorem shows the relationship between these

concepts.

Theorem 1.4 (Roberts [281)

Let G be an undirected graph. The following are equivalent:

(a) G is a proper interval graph;

(b) G is a unit interval graph;

(c) G is an interval graph which does not have KI, 3 as an

induced subgraph (see Figure 1.4);

M G does not contain an induced subgraph which is K1,3,

Illn (n 1 4), IV2, or VI  (see Figures 1.1 and 1.4).

FYr

Figure 1.4: K 1 3.
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Efficient algorithms have been developed for recognizing these kinds of

graphs. Booth and Lueker [5; 6] in 1975 developed a data structure

called a PQ-tree for analyzing matrices of O's and I's for the

consecutive ones property. Their PQ-tree algorithm has (worst-case)

complexity 0(m+n+e) for an m x n matrix with e nonzero entries.

Using this algorithm and Theorem 1.2, interval graphs can be recognized

in linear time. Furthermore, due to the following theorem, proper

(or unit) interval graphs can also be recognized in linear time.

The n x n augmented adjacency matrix M (mij ) of graph

(V, E) is given by

I1 if viv. E or i = j

= otherwise.

Theorem 1.5 (Roberts [29]; see also Booth [4, pp, 117-118])

An undirected graph is a proper interval graphs iff its augmented

adjacency matrix has the consecutive ones property.

Circular arc graphs form another class of intersection graphs

which have been studied. A graph (V, E) is a circular arc graph

if there exists a set (Al,..., AnI of arcs of a circle such that,

for i t J,

V iv j c E <=> A i n A .J

Tucker [33] has characterized such graphs and has recently [32)

developed an algorithm of complexity O(JVj 3) for recognizing them.

Proper circular arc graphs have also been characterized, both in terms
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of forbidden subgraphs [34], and in terms of their augmented adjacency

matrices [33], the latter characterization leading to a recognition

algorithm of complexity O(IVI + IEI). A characterization of unit

circular arc graphs in terms of forbidden subgraphs is also known [34].

1.3 Chapter Summaries

Chapters 2, 3, and 4 give three equivalent formulations of a

fundamental concept in this paper, that of a chronological ordering

of an interval graph. These are used to construct new characteriza-

tions of interval graphs which lead to fairly efficient algorithms for

recognizing whether a graph has certain chronological orderings.

Chapter 5 applies these results to proper interval graphs and proper

circular arc graphs. Chapter 6 discusses the problem of counting how

many chronological orderings a graph has. Chapter 7 is concerned with

representations which contain certain points. Chapter 8 characterizes

interval edge graphs and Chapter 9 provides some NP-completeness

results concerning the consecutive ones property of matrices.

1.4 An Archaeological Seriation Problem

We will use the following application of interval graphs to

motivate many of the results of this paper. This example is discussed

in Roberts (27, pp. 31-37; 26, pp. 118-120]. See also Kendall [18; 19]

and Golumbic [12].

While digging in an ancient graveyard, archaeologists often come

across quite a variety of styles of pottery or other artifacts. There

are many questions about these various styles to which they would like
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to have answers. For example, were two given styles ever in use at the

same time? Was there ever a time at which a certain style "a" was in

use but style "b" was not?

To try to answer these questions, let use first assume that:

Each style was in use during a single interval of time.

Under this assumption, there are essentially only three possible

relationships between two styles:

(1) Style u appeared after style v disappeared;

(2) Style u appeared after style v and disappeared before

style v;

(3) Style u appeared when style v was already in use and

disappeared after style v disappeared.

(Of course the role of u and v could be reversed.) These cases

correspond to the three possible relationships between two intervals

with distinct endpoints:

(11) 1 u follows I v 'v

(2') 1~ is contained in Iv:I 'u

(3') Iu overlaps I v to the right: I v - u

Thus a set of intervals {IU : u is a style of pottery} represents

the proper relationships in time between the various styles if:

case (1), (2), or (3) is true for the styles u and v <=> case

(1'). (2'). (3'), respectively, is true for the intervals I u andI

Such a set of intervals is called a chronological representation of the

artifacts. We will consider the problem of trying to find a chronolog-



ical representation from the data obtained by the archaeologists.

Suppose two different styles of pottery appear in a commion grave.

Then it is reasonable to assume that their intervals of use intersect.

If the collection of graves is quite extensive, it may also be reason-

able to assume the converse is true, i.e., if two styles were ever in

use at the same time, then artifacts of each style appear in at least

one conmmon grave. Thus we are assuming that:

Two styles appear in a commnon grave iff their intervals of

use intersect.

Now we form a graph GP = (V, E) in which V is the set of styles of

pottery, and in which two distinct vertices are joined by an edge iff

those styles appear in a conmnon grave. Then by our assumptions above,

GPmust be an interval graph. Furthermore, any interval representa-

tion in which all the endpoints of the intervals are distinct is a

possible chronological representation of the artifacts. Unfortunately,

unless GPconsists of a single vertex, it has at least two representa-

tions which differ on containment, overlapping to the right, or

following (see Figure 1.5). We will call such representations

different chronological orderings of G P (the name comes from Roberts

[26, pp. 118-120]). Thus each chronological ordering of GPis a

possible chronological representation of the artifacts.

Chronological orderings of a graph are studied in Chapters 2, 3,

and 4, where the term is more precisely defined.
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G has eight chronological

G orderings, which are

v3 represented below.

1: 13 2: 13 11
12 12

3 1 13 13 1Il3: 4:

12 12

5 13 6: 13 Il
12 12

7: 3 I 8: 1 1 13
12 12

Figure 1.5: Chronological orderings of a graph.



CHAPTER 2: CHRONOLOGICAL ORDERINGS I

One way in which different chronological orderings can be

distinguished from each other is by means of the linear order (on the

line) of the endpoints of the intervals in a representation of a graph.

For this reason, we will restrict our attention to representations in

I(G), which is defined to be the set of all interval representations

of an undirected graph G in which every interval is non-empty and in

which the endpoints of the intervals are all distinct real numbers.

We remark that G is an interval graph iff I(G) 0 0.

Let Pn denote the set of 2n elements {Z1 ' V 2"- 'n r,,

rn } and let

On {(Pn, T): T is a linear ordering of Pnd.

We note that IOn1 = (2n)! Also, let Ln I n} and

Rn  r dr, . . n, and so Pn = Ln u Rn.

The set On is related to I(G) by means of the mapping

FG: I(G) O n defined as follows. Given a representation

I = {1,..., In} e I(G), we associate the left [resp. right] endpoint

of Ik with Lk [resp. rk] for k = 1,..., n. The linear order of

the endpoints of the intervals of I on the real line induces a linear

order on Pn and hence we get an element of On . (See Figure 2.1.)

G I The linear order FG(1) is

V = [1,4] represented by the following

12 [2,6) sequential order:

13 [5,7]

Figure 2.1: An example of the mapping FG'

66-
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Using FG, we construct an equivalence relation n, on 7(G) by

defining

I I <=> FG(I) = FG(I.)

for I, ' c I(G). We call an equivalence class under ^- a chronoloQ-

ical ordering of G, and call FG(I) C n the linear ordering of Pn

associated with I.

There are many natural questions about chronological orderings.

Given an undirected graph G, exactly which linear orders on Pn can

be associated with a representation of G? Given a partial order on

Pn' when can it be extended to a linear order associated with a

representation of G? Is there an efficient algorithm for extending

it? How many chronological orderings does a graph have? Most of these

questions will be answered here.

2.1 Main Results

Theorem 2.1

A graph G = (V, E) is an interval graph iff there exists (Pn' T) E

0 with the following properties:

(a) 1iri c T for i= 1,..., n and

(b) for i $ J, vivj £ E <=> tirj e T and Zjr i c T.

Furthermore, i" this is the case, then (Pn , T) is associated with a

representation of G.

Proof: (=>) Let I c I(G) such that FG(1) = (Pn, T). Clearly, we

must have 1ir i e T for i = 1,..., n. If viv 4 E, then, without
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loss of generality, Ii < I. Thus rj4 i c T. Conversely, if

rj T (or r i~ z T), then I < Ii  (or Ii < I In particular,

Ii n 1= 0 and so vivj v E.

(<=) Let A(x) = {ycPn: yx c T} for each x c Pn We define a

representation I = { I} of G as follows: Let

Ii = [JA( , IA(ri)J], for i = I,..., n.

Because of conditions (a) and (b), it is easy to see that I represents

G and that (Pn, T) = FG(O). 0

Given G = (V, E) and (Pn , T) e On , this theorem provides a way

of testing in O(IVI 3) steps whether (Pn , T) is associated with a

representation of G. It is natural to ask whether this characteriza-

tion can be used to construct a recognition algorithm for interval

graphs. Such an algorithm will shortly be constructed, but it will be

useful to first put the problem in a more general framework. This will

enable the algorithm to solve problems which are beyond the ability of

the more efficient recognition algorithms that exist for interval

graphs.

Let us return to the example of archaeological seriation. As

before, suppose that a chronological representation of the artifacts

is an interval representation of Gp. Now, let us suppose that we have

some extra information on the relative positions of the intervals of

use of the artifacts, in the form of knowledge as to which of various

endpoints of the intervals are to the left or right of certain other

endpoints. For example suppose it is known, by some other records,
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that style i disappeared before style j appeared. Or suppose it is

known that style i appeared after style J, but it is not known

which style disappeared first. We want our representation of Gp to

contain this information.

This amounts to putting some restrictions on the linear orders on

Pn to be associated with the representation of Gp. For example,

knowing that style i appeared after style j disappeared means that

we are interested only in those representations of G whose

p

associated linear order T on Pn satisfies r I, e T.

This raises the following question. We remark that our problems

are presented in the format described by Garey and Johnson [10, p. 4].

A problem is a general question to be answered, which is asked of a

particular class of objects usually containing several unspecified

parameters. An instance is obtained by assigning specific numerical

values to the parameters.

Problem 2.2

Instance: Graphs G = (V, E) and (Pn , S).

Question: Does there exist a linear order T on P n such that

S c T and (Pn. T) c FG(I(G))?

We shall construct an alogrithm of complexity O( Vf 3) that

solves this problem and constructs the linear order T (if one exists).

We first consider the case where S = 0.

In the following algorithm, an undirected graph G(V, E) is the

input. The output is either "FLAG 1 I", which means G is not an
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interval graph, or "FLAG = 0" and a linear order T of Pn such that

(Pn, T) c FG(I(G)).

All our algorithms are written in Pidgin ALGOL as described by Aho

et al. El, pp. 33-39].

Algorithm 2.3

begin

initialize: T 4- iri: i = ,..., n} u {tir., itri: viv. E El; (1)

if EC cannot be transitively oriented (2)

then write "FLAG = 1" and halt

else construct such an orientation TC;
T~c

for all viv C T do T - T u {kit , itr ri j,  r ir ; C3)

for all viv 3 e do (4)

for all k such that Vik E and VkVj E do (5)

T - T u [rirk ,  k j}

for all rir. £ Rn A R \(T u T1 ) with i < j do (6)

13 n n

T - T u {rir };

for all Zij Ln A L \(T uT ) with i < do (7)

T - T u {i

if T n T l  then write "FLAG = 1" (8)

else write "FLAG = 0" and T

end

Theorem 2.4

Algorithm 2.3 solves Problem 2.2 in the case where S



Proof: Suppose G is not an interval graph. Then by Theorem 1.3,

either Ec  is not transitively orientable or G contains the induced

subgraph C4. In the former case, the algorithm will output "FLAG = I"

from line (2). For the latter case, consider:

Lemma 2.4.1 If Gc has a transitive orientation Tc, then Algorithm

2.3 writes "FLAG = I" <=> G contains C4 as an induced subgraph.

Proof of Lemma 2.4.1: Suppose G contains C4 with vertices vi, v2,

v3, v4. (See Figure 2.2. We draw a dotted line with an arrow from

vertex a to vertex b to indicate that abc Tc.)

v4 v3

Figure 2.2: Sufficiency in Lemma 2.4.1.

Without loss of generality, v1v3 6 Tc and v2v4 c Tc. When line (4)

considers vIv 3 E Tc, then line (5) places {rIr 2  in T. But when

line (4) is considering v2v4 c Tc, then line (5) places {r2rl) in

T. Hence "FLAG = 1" will be written when line (8) is implemented.

Conversely, suppose "FLAG = " is the output. Then some xiYk

and Ykxi were both added to T, where x,y c {t, r}. It is easy to

see that this must have occurred in line (4) and (5), and therefore

that x = y - r or x a y a 1. We will consider only the case in

which x y = r; the second follows similarly. Suppose rirk was
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added to T when viv j c Tc was being considered in line (4), and

r kri was added to T when v kV9 e TC was being considered in line

(4) (see Figure 2.3).

vi 40- vk

g%

Figure 2.3: Necessity in Lena 2.4.1.

If v v 4 E, then either vt v. Tc or vjv T But each case

contradicts the transitivity of Tc. Thus v iv c E and hence

{vi , vk9 v 3 . v induces C4  in G. This completes the proof of

Lemma 2.4.1.

Now suppose G is an interval graph. We must show that the out-

put is "FLAG = 0" and T, and that (Pn , T) cFG(I(G)). By Theorem

1.3, Ec has a transitive orientation and G does not contain C4

as an induced subgraph. Hence by Lena 2.4.1, "FLAG = 0" and T are

the output. By steps (1) and (3), the conditions of Theorem 2.1 are

satisfied, so all that remains to be shown is that T is a linear

order on Pn . To accomplish this, we need only show that T2 c T.

Let T' denote the set T just prior to the implementation of

line (6).

-A _ ......... 1
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Lemmna 2.4.2 If G is an interval graph, then T' is transitive and

each component of (Pn' (T)) is a complete graph.

Proof of Lemma 2.4.2: We will say that (triangle) vi VkV forces

r. rk c T' and Zkt. i T' if viv. c TC, viv k E E, vk c c E and

hence lines (3), (4), and (5) add {rirk, k j to T'. The proof

will be split into eight cases, each of which has some subcases. We

use the symbol "(=><=)" to denote a contradiction, and we use the fact

that vivi e Tc if viv j 4 E and either rir j c T' or tit T'

(due to line (3)).

CASE 1: Assume rir 3 , rjrk e T'. We want to show that rirk T'.

Subcase 1: viv. E, v vk F E, viv k e E. Then r rk must have been
Tc

forced by some AVjVkv I with v c and vkV z E

(see Figure 2.4).

V V k

Figure 2.4: Case 1, Subcase 1.

If V i V e E, then Av ivL forces rr i c T' (=>=). Hence

viv { j E and by the transitivity of TC, we see that viv T and

so AViVkVL forces rirk c T'.

Subcase 2: vv j £ E, vJVk c E, viVkj E. Then vivk c TC or else

Avkvjvi forces rkr j £ T'. Hence by line (3), rirk E T'.

"~~~ k . .r , , ll .! i
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Subcase 3: vi v i E, vjvk 4 E, vivk e E. This cannot happen, because,

if so, then v vk e Tc and hence Av Viv k  forces
r r i e T' (=><x).

Subcase 4: v J E, ViVke E, vjvk e E. Then rjrk £ T' must have

been forced by some avv kv with vv Y C Tc and

VkVL e E. By the transitivity of T, viv j , vv E Tc

viv e T . Hence Av iVkVI forces rirk T'.

Tc

Subcase 5: v 4 E, vjvk 4 E. Then viv T and viv k E Tc, so

by transitivity of Tc, vivk F Tc and hence line (3) gives

rirk e T'.

Subcase 6: viv 3 4 E, vjvk e E, vivk 4 E or viv j E E, vjvk E,

vivk J E. By the transitivity of Tc, viv j e Tc =>
vivk T c or v.vk  c Tc => vi k  Tc. Hence by line (3),

rirk T'.

CASE 2: il 9j t Ik e V. This is proven just like Case 1.

CASE 3: ri9j' 'ijt k c T'. First note that ril j e T' => viv j t Tc

=> tit e T'. If i = k, then k 9j = Ii £ T' (=><=).

Thus i, j, k are distinct. Note that ritj £ T' =>

vivi e Tc.

Subcase 1: vjvk 4 E. Then vJvk c so by the transitivity of Tc,

we get vivk e TC and hence rick c T' by line (3).
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Subcase 2: vjvk v E, vivk . E. Again by the transitivity of Tc we
Tc  Tc

get vv j  T = vivk TC and hence r z T'.

Subcase 3: vJVk £ E and v vk c E. This cannot happen because, other-

wise &v kVj forces t i T (R><).Sk kj

, Tc "

CASE 4: z~r., r.2 k e To. Note that v v4 E and v v T

If i = j, then v Vk vjvk Tc, so by line (3), we qet

i. z c To. Now assume i, j, k are distinct.

Subcase 1: viv j 4 E. Then vie T so by the transitivity of Tc,

we get vivk C Tc  and hence z i~ Lk F TO.

Subcase 2: vi vj  E, v iv k 4 E. Then by the transitivity of Tc,

viv k  T and hence ik f T

Subcase 3: viv. e E, vivk E E. Then AVjViVk forces x iLk F TO.

CASE 5: i l rk c T'. If i = k, then L rk e T by line

(1). If j = k and viv j c E, then zirk F T' by

line (1). If j = k and viv. 4 E, then viv. e Tc

and so by line (3) we get Lirk = r T'. Now assume

i, j, k are distinct.

Subcase 1: viv 3 4 E, vjvk 4 E. Then by the transitivity of Tc ,

vivY, vivk T => vivk £ TC, so by line (3), tirk 1.

Subcase 2: viv j c E, vjvk 4 E, vvk 4 E. By the transitivity of

vjvk T ivk Tc so ir IT'.

k' i k: . ...
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Subcase 3: viv 3 ( E, vjvk e E, vivk j E. By the transitivity of TC,

viv T c => vi e so ;ir E T'.
.IJ lkT i k

Subcase 4: vivk c E. Then by (1), we get tirk c T.

Subcase 5: vivk E, viv E E, vjvk F E. Then tirk e T', or other-

wise, rkt i c T' => VkV i e Tc and then Av v i forces

E.91. E ' (T><=).J i

CASE 6: rir j , rjZk c T'. Note that vjvk € E and vjvk c Tc.

If i = k, then vjv i = v vk k Tc => r cri  T' (=><=).

Hence i, j, k are distinct.

c Tc

Subcase 1: viv j  E. Then by the transitivity of Tc, vi v k  T and

hence riLk e T' by line (3).

cSubcase 2: v £v E and viv'k j E. Then by the transitivity of T

vivk e T and hence rilk e T' by line (3).

Subcase 3: vivi & E, vivk c E. This cannot happen because, if so,

then Av viv k forces rr. 6 T (=re=).

CASE 7: 1 rjrk Tn. If i = k, then xirk = Eiri C T'

by line (1). If i = j and vivk eE, then irk CT'

by line (1). If i = j and vivk 4 E, then vivk =

vjvk e Tc so Lirk e T' by line (3). Now assume i,j,

k distinct.
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Subcase 1: vivk e E. Then tirk e T' by line I).

Subcase 2: viv k 4 E and (v vk 4 E or viv. 4 E or both). Then

C cby the transitivity of T, we get vivk T and so

Lirk c T' by line (3).

Subcase 3: vivk J E, vjvk F E, viv. e E. Then vivk c TC and hence

2irk c T' since, if vkV i e T
c , then &vkv vi  forces

r krj c T'(==.

CASE 8: riLi ,  jrk c T'. Note that viv. 4 E and vv. c TC.

If j = k, then vivk = viv. c TC so rir k  T'.

So assume i, j, k distinct.

Subcase 1: viv k 4 E or vjvk 4 E or both. Then the transitivity

of TC forces vivk e T and so rirk E T.

Subcase 2: vivk c E, vjvk c E. Then Av ivkVj forces rirk E T'.

This shows that T, is transitive. Now let us prove that the

components of (Pn , (T)c) are cliques.

Note that each component's vertices are totally contained in Rn

or totally contained in Ln, by lines (1) and (3). The two cases are

similar, so we will consider only the first. Suppose rir j , rjrk

(f)c. Since these edges and their inverses were not added to T'

before line (6), it must be true that viv, vjvk' vivk c E. Now

suppose r rk 4 (T)C. Then without loss of generality, rirk e V.

Thus there must be a triangle avi VkV L which forced rirk c T' (see
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Figure 2.5).

vi  v

Figure 2.5: The vertices vi , VP v k, v .

If v V E E, then 6vv forced rir 3 e T' (=><=). But if

v.v j E, then the transitivity of TC forced v v c TC and then

AV. VkV forced rjrk £ T' (=> ). Hence rirk (T)C. This suffices

to show that all the components of (P n (r)c) in Rn are cliques.

This completes the proof of Lemma 2.4.2.

Now to finish the proof of Theorem 2.4, we note that, since T'

is transitive, any linear order T" (for example, the one given in

lines (6) and (7)) can be given to the vertices in each of the cliques

of (PnI (1-)c) and T' + T" will form a linear order on Pn" 0

Now let us return to Problem 2.2 and consider the case where

S 0 9. The-fel4-tnIg alrorithm accepts as input G - (V, E) and

S c Pn I Pn. The output, as before, is either "FLAG = ", indicating

there is no solution, or "FLAG = 0" and T, which is the desired

linear order.
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Algorithm 2.5

initialize: TC 0; T {Ziri: i = 1,..., n) u

{ ir., Zjri: viv. E E; (1)

for each xiy j 4 S such that viv v E or i = j do

T T u {xiYj); (2)

comment: x, y e {r, 0i;

for each xiy j c S such that i j and vv j y E do (3)

T * T u {ri I .rir ,i ijs I ir. ;

for each rirj c S do (4)

for each k j such that viv j £ E, viv k e E, v 4vk  E do (5)

T - T u {rkrji, 
t kj, rk i , Ikrj ;

for each £ S do (6)

for each k # i such that v E, vvik cE, vivk I E do (7)

T - T u {rirk , £i k
, rik , L irk);

for each rir j cT such that viv i4 E do Tc *T c u {viv.}; (8)

if there exists a transitive orientation 
of EC that contains Tc

then Tc  such an orientation (9)

else write "FLAG = V and halt; (10)

for each vv j  TC do T -T u {t, Y, rir., Lir., r i ; (

for each viv 4 T C  do

for all k such that vivk E E and vkVJ cE do

T T u {rirk, sktLj}; (12)

if (P n T) is not acyclic then write "FLAG = 1" and halt (13)

else T * a linear ordering of Pn that contains T; (14)
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write "FLAG = 0" and T (15)

end

Theorem 2.6

Algorithm 2.5 solves Problem 2.2.

Proof: Suppose "FLAG = 0" is written as part of the output. Then T

is a linear order on P by line (14) and, by lines (2) and (3), itn

contains S. By lines (1) and (11) it satisfies the conditions in

Theorem 2.1, so (Pn, T) e FG(I(G)) as desired.

Suppose, conversely, that G is an interval graph and there

exists an extension T of S such that (P 9 T) c F (I(G)). Thenn G
we claim that Algorithm 2.5 will produce such an extension. We show

first that the else clause in line (10) is not implemented and that

T n T- = 0 prior to the implementation of line (13).

Note that any linear order T' which extends S and for which

(Pn' T') E FG(I(G)) must contain all of the edges added to T in

lines (1) - (7), as the following arguments show. This is obvious

for lines (1) and (2). For line (3), if an endpoint of I. is to

the right of an endpoint of Ii and I. n Ii = 0, then I. is

completely to the right of Ii. For lines (4) and (5), we note that

if {II,..., In I e (G) and the right endpoint of Ii is to the left

of the right endpoint of I., then any interval Ik which intersects

Ii but not I. must be completely to the left of I. Lines (6) and

(7) follow similarly to (4) and (5). Therefore T n T- = 0 prior

to the implementation of line (8).
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Furthermore, Gc must have a trinsitive orientation which

includes Tc as defined in line (8) by Theorem 1.3. Thus line (9)

will not cause "FLAG = 1" to be written.

Let xiy i be one of the edges added to T in line (11) when

viv j  TC i. under consideration and suppose that yjx i had already

been added to T. Then yjx i could only have been added when lines

(3)-(7) were being implemented. But any of these possibilities would

have caused v v. to be added to Tc in line (8), contradicting

vivE T. Hence after line (11) is implemented, T n = 0.

We next consider step (12). Suppose that, when some viv. T c

is under consideration, there is some vk with v ivk e E and

vjv k e E for which rkr i or 2jk has already been added to T.

Consider the case in which rkr i e T; the case where IjEk E T is

similar. Then rkr i must have been added to T in line (2) or an

earlier loop of line (12). If rkri was added to T in line (2),

then lines (4), (5), and (8) would have caused vjv i to be in Tc,

contradicting vi' j u Tc. Thus rkr i must have been added to T in

an earlier loop of line (12), say, when VkVL e T was under

consideration. Then viv a c E (see Figure 2.6).

vI  v k

Figure 2.6: The vertices vit vi, vk, v .
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If v vj 4 E, then we obtain a contradiction of the transitivity of

TC regardless of whether vjv c Tc or v vj c Tc. Thus v. v E,

and so {vik, v , v, v induces C4  in G, contradicting G's

being an interval graph. Thus rkr i could not have been added to T

and so T n T-1 = 0 prior to the implementation of line (13).

All that remains is to show that (Pn , T) is acyclic. Let

T' denote the set of edges added to T in lines (1), (11), and

(12). By Lemma 2.4.2 of Theorem 2.4, T' is transitive and

(Pn' (Tr)c) has connected components consisting of cliques.

Therefore, since T n T l = 0, the set T being tested for

cycles in line (13) can be partitioned into T' + K, where K

is a set of edges from the cliques of (Pn' (n9 )c). This latter

set of edges must have been added to T in line (2) of the

algorithm and so K c S, which means that (Pn, K) is acyclic.

When combined with the transitivity of T, this implies that

(Pn, T) = (Pn, T' + K) is acyclic, as the following argument shows.

Suppose (Pn' T) has cycles. Let C = [xl, x2 ,..., Xk],
k > 3, be a shortest cycle in (P n T). Without loss of generality,

XlX 2 e K, x2x 3  T'. Now T 3 t (l)c since the components of

(Pn' (T)c) are cliques. Therefore, xIx 3 e T' or x3x1 e T' and so,

since T' is transitive, xIx 3 c T'. But now Cxl , x3,.... xk] is a

shorter cycle in (Pn , T), a contradiction.

Therefore (P n T) is acyclic, and the theorem is proved. 0

n>
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An implementation of line (9) is discussed in Chapter 4, where

it is shown that it can be done in O(jVj 3) steps. Lines (13) and

(14) can be implemented to run in O(JVJ + ITI) steps by a

"topological sorting" procedure (see Golumbic [12] or Knuth [21,

vol. 1, pp. 258-265)). Thus it can readily be seen that Algorithm 2.5

has worst-case complexity O(JV 3).

2.2 Graphs with Fuzzy Edges

Let us return to the example of archaeological seriation.

Consider the case where the graph Gp turns out not to be an interval

graph, thus indicating a flaw in one or more of the b,.ic assumptions.

The problem could be due to the fact that, for certain pairs of

vertices, the data suggesting the inclusion (or omission) of an edge

between them is insufficiently compelling. For this reason, some

edges may have been added (or left out) that should be left out (or

added).

This possibility leads to the following problem. (In this form,

those edges for which the information is "fuzzy" are denoted by E2.)

Problem 2.7

Instance: Graph G = (V, EI + E2 ), with undirected sets of edges

E and E2.

Question: Does there exist an undirected set E of edges such that

E cEE + E2 and (V, E) is an interval graph?
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This question is also relevant for Seymour Benzer's experiment in

molecular genetics (2; 3]. He collected data indicating whether

various connected regions of a gene intersect each other, and he hoped

this data would support his claim that the gene is linear in structure.

If we consider each region as a vertex, and connect two vertices with

an edge iff the two regions intersect, then the resulting graph must

be an interval graph if Benzer's hypothesis is correct.

For one set of 19 regions, Benzer tested all pairs for inter-

section and he actually obtained an interval graph, which supported

his hypothesis.

However, for a set of 145 regions, he was not able to test all

pairs to see if they intersect. In this case, he was in the situation

described in Problem 2.7 in which E connects the pairs Benzer was

not able to test. In his case, the answer to the question in Problem

2.7 was yes; that is, he was able to find an interval graph as

desired, but he did not indicate a method with which we can always

efficiently answer the question.

It is not known if there is an efficient means of solving Problem

2.7. It is very closely related to some known NP-complete problems

(see Garey and Johnson [10, Problem GT35]), which indicates that the

problem might be quite hard to solve. However, a special case of the

problem can be solved by an algorithm of complexity O(IV 2) using

the methods developed in this chapter.

Consider once again the example of archaeological seriation.

Suppose that, for each pair of intervals which the archaeologists are
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certain do not intersect, the intervals are so far apart that it can

be determined which of the two is older and which is more recent.

We formulate this special case as follows:

Problem 2.8

Instance: Graph G = (V, El + E2) with undirected sets of edges El

c
and E2, and an orientation S of all the edges in G

Question: Does there exist a set I = {Il,... In} of closed, non-

empty intervals with all endpoints distinct, such that

(a) vivi £ El => Ii n Ij 0 0, and

(b) v i v S => I. < I.?

The next theorem characterizes those instances of Problem 2.8 for

which the answer is yes. Furthermore it provides a test with O(1V12)

steps for solving the problem.

Define T c Pn A Pn as follows:

T = {t ir, Iiri: viv. c E£ u .ri: i = 1,..., n)

u {Ei i, rir3 , kir., r it: viv. £ S).

Theorem 2.9

There exists a set of intervals as desired in Problem 2.8 iff (Pn' T)

is acyclic.

Proof: If there is such a set of intervals, then such a representation

will induce a linear order on Pn which clearly contains T. Thus T
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must be acyclic.

Conversely, if (Pn , T) is acyclic, T can be extended to a

linear order. This linear order is associated with a set of intervals

which by Theorem 2.1 has the desired properties. 0

Note that this situation could be generalized slightly by allow-

ing some extra restrictions on the ii s and r.'s in an instance

of the problem. This could easily be handled by including them in T,

in which case Theorem 2.9 would still hold.

A topological sorting algorithm applied to (P n, T) will deter-

mine if it is acylic, and if so, produce a linear extension in

O(IVI + ITI) steps.

As is often the case, not only would it be nice to know when a

solution exists, it would also be nice to know how many such solutions

there are.

Enumeration of solutions to Problem 2.2 in the special case where

S =0 is discussed in Chapter 7. The general case is more

complicated, and the author knows of no efficient enumeration scheme

for it.

For Problem 2.8, the number of solutions is just the number of

linear extensions of T. This subject will be discussed in Chapter 4.



CHAPTER 3: CHRONOLOGICAL ORDERINGS II

It may have become clear in Chapter 2 that to completely describe

a chronological ordering of a graph, all that is needed is the linear

order of the right endpoints and the linear order of the left endpoints

of the intervals. This idea is explored in this chapter.

Recall that Rn = {rl,..., rn) and Ln nl"' n1

(Pn = Rn u L n). Let

Rn  {(R n, TR): TR is a linear order on R n

and

Ln = {(Ln, TL): TL is a linear order on Ln}.

As described in Chapter 2, if, for any representation I ={{l,...,

in} I(G), the left [resp. right] endpoint of interval Ii  is

associated with I i [resp. ri], then the linear order of the endpoints

on the real line induces a linear order TR on Rn and a linear
RL n

order TL on Ln. This defines a mapping FGL: I(G) Rn x Ln. TR

and TL are said. to be associated with I.

The following theorem is the analog of Theorem 2.1.

Theorem 3.1

A graph G = (V, E) is an interval graph iff there exist linear orders

TR on Rn and TL on Ln with the following properties: For all

i, j, and k,
(a) rir j e TR and Vk c N(vi)\N(vj) => k jR. T L, and

(b) £Li c TL and Vk c N(vj)\N(v i) => rirk e TR.

me .. nI = --; .....
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Furthermore, if this is the case, then TR and TL are associated

with some representation of G.

Proof: Let I c I(G), I = {II,..., 'n1 . It is easy to see that the

linear orders TR and TL  associated with I satisfy conditions (a)

and (b). If interval I. extends to the right of Ii and Ik inter-

sects Ii but not I., then Ik must extend to the left of I.

Also, if Ii extends to the left of I And Ik  intersects I. but

not Ii, then Ik must extend to the right of Ii.

For the converse, assume there exist linear orders TR and TL

with properties (a) and (b).

Lemma 3.1.1: If viv j E and i # j, then rir 3 £ TR <=> ii e TL '

Proof of Lemma 3.1.1: Let viv. € E and i # j. Assume rir e T R'

Then vi e N(vi)\N(vj) so by (a), we have ti e TL. If £i jcTLT

then since vj c N(vj)\N(vi), property (b) gives rir j e Tr.

Lemima 3.1.2: G does not contain C4  as an induced subgraph.

Proof of Lemma 3.1.2: Suppose [vl, v2, V3, v4) is a chordless cycle

in G. Without loss of generality, we can assume that r2r4 e TR ,

12 E4 e TL9 rIr 3 e TR, JIL3 c TL by Lemma 3.1.1. Furthermore, by

symmetry, we can assume that r1r2 e TR (see Figure 3.1).
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r r t2

r4L r3 Z4 Z3

Figure 3.1: Lemma 3.1.2.

But now rl r2 e TR and V4 E N(vl)\N(v2 ), so by property (a)

£42 1 TL. But this contradicts 24 £ TL-

Le.ma 3.1.3: Let Tc = {viv j t E: rir j  TRI. Then Tc is a transi-

tive orientation of Gc.

Proof of Lemma 3.1.3: Note by Lemma 3.1.1 that Tc {viv k E:4

I i. e TL} Now let viv j , Vjvk c TC. Then rir j , rjrk c TR and

ij lljk TL" Hence by linearity of TR and TL9 we have rirk

TR and Iik c TL. Thus, vivk e Tc if viVk 4 E. Assume vivk E E.

Then since rir j 1 TR and vk E N(vi)\N(v.), property (a) implies

that tktj c TL, a contradiction. Hence vivk j E and the proof is

complete.

Now by Lemmas 3.1.2 and 3.1.3 and Theorem 1.3, G must be an

interval graph. We next show that TR and TL are associated with a

representation in I(G).

Define a relation T on P byn
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T = TR + TL + (Lir 1 : 1 - 1,..., n) + {Lirj , Ljr: viVj £ E)

+ (Ir., riL.: vivj I E and rir j cT

Lena 3.1.4: T is a linear order on P n which is associated with a

chronological ordering of G.

Proof of Lemma 3.1.4: By Theorem 2.1, we are done once we have shown

that T is a linear order. We need only check transitivity. Each of

eight cases will be considered. We note, first, the following property

of T which follows from the definitions of T and Tc:

() If Viv 4 E, then the following are equivalent:

(1) riri c T (3) rizL c T (5) vi v Tc.

(2) 1 Li eT (4) Lr. c T

CASE 1: riri , r rk c T. Then rirk e T by the transitivity of

TR•

CASE 2: t Lis LjIk e T. Then Yitk c T by the transitivity of

TL•

CASE 3: tiLj, Irk e T. Assume rkL i CT. Then vkvi 4 E and

rkri E T by (*). If vJvk e E, then by property (b),

we must have rirk a T (-><-). Hence vJvk 4 E, so by

N, vv k a Tc. Since by (*), VkVi TC, Lema 3.1.3

says that vjv t c Tc. Hence by (*), Li T (-><).

Thus our assumption that rktI a T is false and so

1r k a T.
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CASE 4: 4iri, r rk c T. The proof that tirk c T is almost

identical to the proof of Case 3.

CASE 5: rir 3, rjk i T. By the definition of T, vJVk A E

and so vjvk C T . If Vivk c E, then property (a)

gives 2 i E, contradicting vjvk c Tc and (*).

Thus v ivk 4 E. If vi v e E, then by the transitivity
c Tc

of TC, vivk cT and hence r ik T by (*). If

viv3 4 E, then viv c TC by (*), and hence the

transitivity of 7c gives vi vk c T and by (*),

ri k f T.

CASE 6: r i k jik c T. The proof that rizk E T is almost

identical to the proof of Case 5.

, Tc

CASE 7: rig rjtk E T. Then by the definition of T, vjvk c T.

If v v. j E, then viv j c Tc by (*), so the transiti-

vity of Tc gives vivk T C and therefore lit k c T

by (*). If viv j c E, then by property (b), 'ilk c T.

(If kt i e T, then property (b) implies rkrj 1 Ty

contradicting vjvk c TC and (*).)

Case 8: rigi, IJrk c T. The proof that rirk c T is almost

identical to the proof of Case 7. This proves the lemma.

Now by Theorem 2.1, (Pn , T) is associated with a representation

I of G and clearly, by the definition of T, this implies that TR

and TL are also associated with I. Thus the theorem is proved. 0
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Theorem 3.2

Let TR ar' TL be associated with a representation I = { ..""II n}

I(G). Then FG(I) = (Pn T), where T is defined as in the proof

of Theorem 3.1.

Proof: If FG(I) = (Pn, T'), then T'IRn = TR and TILn = TL

because TR and TL are associated with I. Furthermore, by Theorem
2.1, {iri: i =,..., n) c T' and {zir., k.ri: viv. c E) c T'. For

each viv3 4 E, either rir j e TR or rjri c TR. Since TR and TL

are associated with I, the former case implies that Ii < I. and

the latter that I. < Ii. Hence

{tiri, ri L: vivj * E and rir j € TR1 c T'.

Thus T c T' and so T = T' because T is a linear order on Pn' 0

Corollary 3.3

Let I, I F 1(G). I , I' iff F RL(1) = FRL
GG

Proof: If I - I', then FG(1) = FG(I') = (Pn , T') for some linear

order T' on P n. Since TR and TL are just the restrictions of

T' to Rn and Ln. respectively, we obtain F L(1) F RL(I-).
Conversely, if FRL(1) = FRL(I ') = ((Rn T (L T then by

G G . n' ( ,T))

Theorem 3.2, FGM1) = (Pn, T) % FG(I') where T is defined as in the

proof of Theorem 3.1. Therefore I,'. 0

Thus F L splits I(G) into the same equivalence classes as F

and hence defines the same chronological orderings as FG .
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As for Theorem 2.1, we can ask whether Theorem 3.1 is useful for

recognizing interval graphs. More generally, as in Chapter 2, we can

ask whether Theorem 3.1 is useful in the situation in which we are

given partial orientations on R n and L n and we wish to know

whether they can be extended to linear orders which are associated with

a representation of G.

Theorem 3.1 can be used for recognizing interval graphs by means

of an algorithm very similar to Algorithm 2.3. However, it also takes

0(1V1 3) steps. Like Algorithm 2.3, it could be modified to take in

the more general situation, but a little reflection shows that this is

really only a special case of Problem 2.2; it is the case in which the

initial conditions in S are restricted to R n or to L n* For that

reason, such an algorithm will not be discussed here.



CHAPTER 4: CHRONOLOGICAL ORDERINGS III

In this chapter, we formulate the concept of chronological

ordering in a third way, which facilitates the construction of

algorithms for solving problems not solvable by the earlier algorithms.

4.1 Main Results

Let C, 0, F be irreflexive relations (i.e., edges) on V. Let

D(V) = {(V, C+O+F): C n C = 0 n Ol = F n F l = and

+ 6 + =V A v}.

D(V) can be thought of as the set of all oriented graphs with vertices

V and with exactly one edge between every two vertices (i.e., a tour-

nament), whose edges are partitioned into the three sets C, 0, and F.

Let I = {I,... In} 4 I(G), with Ii = [ai biJ for

i = 1,..., n. The following process constructs an element (V, C+O+F)

of D(V). Let

C = (viv : a. < a. < b < b I (Ij contains I i )

0 = {viv.: ai < a. < bi < b.} (Ij overlaps Ii on the right)

F = {viv.: a i < b. < a. • b.) (I. follows Ii).

Since exactly one of these possibilities is true for every pair of

intervals in I, it is clear that (V, C+O+F) e D(V). This defines a
mapping F COF. I(G) -t D(V). Call FCOF(1) the tournament associated

G G

with I. See Figure 4.1 for an example of this.

-- mod"
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G A representation I of G:

v) 11 = [1,3] 12 = [2,8)
v 2 v3 13 = [4,6] 14 = [5,7)

2  V

FCOF(I)

Representation I displayed as intervals:

0 F

1 13 14 +OF
i 1 v2 .F / 3

1 2 3 4 5 6 7 8 c 0
v4

Figure 4.1: An example of the mapping F OF.

Theorem 4.1

A graph G = (V, E) is an interval graph iff there exists

0 = (v, C+O+F) £D(V) with the following properties:

(a) C+O=E

(b) C + 0 + F and C-l + 0 + F are transitive

(c) F(C-l + 0 + F) c F.

(d) (C + 0 + F)F c F.

Furthermore, if this is the case, then D is associated with some

representation in I(G).

Proof: Let I = {I..., In} I(G) where 1i = [ai , bi], for

i ,..., n. We will show that FCOF(1) has the desired properties.

Let FCOF( 1 ) = D = (V, C+O+F). Clearly. I i n I. # 0 iff viv. £ C
G 3 1

or v i  c C or viv 0 or vv i E 0. Therefore , property (a)

.... ii
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is true.

It can be seen by looking at the definition of FCOF that

V ivj c C+O+F <=> bi < b., Since the set {bi: i = 1,..., n) is tran-

sitively ordered on the real line, so is C+O+F. Similarly

viv CC + 0 + F <=> ai < aj, so C-1 + 0 + F is transitive. This

proves (b).
, C-l

For (c), let vivj C F, vjvk F C + 0 + F. Then ai < bi < a <

ak < bk and so viv k e F. Similarly, if viv. E C+O+F and vjv k E F,

then ai < bi < bj < ak < bk and hence vivk c F, which proves (d).

This proves necessity in Theorem 4.1.

Let D = (V, C+O+F) e V(V) have properties (a)-(d). We construct

linear orders TR on Rn  and TL on Ln  by letting

(*) rir j E TR <=> vivj E C+O+F, and

(**) i.. c TL <=> viv. 6 C + 0 + F.

Lemma 4.1.1: TR and TL have properties (a) and (b) described in

Theorem 3.1.

Proof of Lemma 4.1.1: Let tij c TL  and e N(vj)\N(vi).
.1 ~ L Vk 3 1

Then viv C -1 + 0 + F and vivk 4 E so by (a) above, vivk c F or

VkVi e F. If vkVi e F, then (c) above implies that VkVj c F and

hence Vk 4E, contradicting vk c N(v.). Thus viv k c F and hence

rrk e TR by (*)

Now let rir j E TR and let vi v vk e E. Then viv j e
C+O+F. If vJvk e F, then vivk c F by property (d), which contra-

dicts property (a).
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Hence VkVj F (vjvk i + by property (a)) and k L TL

by (**). This proves the lemma.

Now by Theorem 3.1, G is an interval graph as desired. To show

that D is associated with some representation of G, let

I = {I5...,% In} I (G) be a representation to which TR and TL

(defined above) are associated and let Ii  [ai, bil, i 1,..., n.

(One such I is constructed in Theorems 3.1 and 2.1.) We claim:

FOF (1) = D.

If viv3  E C, then by (*) and (**), irj c TR and zjzi f TL"

Now TR and TL are associated with I, and therefore a. ai < bi <

b. as desired.3

If v3iv i O, then rij TR and ki.j x TL P as before, and

hence ai < a. and bi < b., Since vivi c E, Ii n Ij 0 0. Thus

a. < bi and therefore a. < a. < bi < b .

If viv j c F, then ai < a. and bi < b. Since viv j 4 E, it

must be true that bi < aj or b. < ai. The latter cannot happen

since ai < bi < b. Therefore bi < a. and so a < bi  a.<b..
i 3 1s i 1 1 3

This proves that 0 is associated with I and completes the proof of

Theorem 4.1. 0

Note: An alternate proof of this result is contained in Fournier

[8] (see also Golumbic [12]). He provides a more direct construction

of a representation I to which D is associated. For any relation

R on V, let R(vi) = {vcV: viv c R). Similarly, let R- (vi)

{vwV: vvi e RI. Then Fournier shows that D is associated with
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In} defined as follows. If Ii = [ai, bi], then let

a = I + I(C + 0"l + F'l){vi)j + IF- (vi)l and

bi = 2n - I(C+O+F)(vi)l - JF(vi)j.

Some other properties can be substitued for (b), (c), and (d) in

Theorem 4.1, as the next theorem shows.

Theorem 4.2

Let D = (V, C+O+F) e 0(V). Then the following are equivalent:

(1) D has properties (b), (c), (d) in Theorem 4.1;

(2) The following conditions hold:

(e) C2 C C

(f) (O+F)2c 0 + F

(g) F2 n 0 0

(h) FO n 0 0 0

(i) OF n 0 O 1

(j) CFn 0

(k) CFn 0 =0

() OC n F ;

(3) The following conditions hold:

(m) C2 C C (q) F2 c F

(n) 02 c 0 + F (r) CF c F

(o) OFc F (s) oCc O+ C.

(p) FOcF

Proof: (1)=>(3): By Theorem 4.1, D is associated with a
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representation {I11,..., In ) I(G) where G = (V, C+O). Let Ii -

[ai, bi] for i = 1,..., n.

If vi vj vjvk c C, then

ak < a. < a < b < b bk

and so v ivk E C. This proves ().
If viv j, vjvk C 0 + F, then ai < aj < ak and bi < b. < bk

and so viVk £ 0 + F. This proves (n).

If viv. c 0, v Vk e F, then

a. < a. < bi < b. < ak < bk

and so vivk e F. This proves (o). The proofs for (p), (q), and (r)

are similar to these.

To prove (s), we note that if viv j e 0 and vjvk e C, then

ai < a < bi < b < b Also ak < a If ak < ai < aj, then

vivk 6 C. If ai < ak < aj, then vivk E 0.

(3) z> (2): It is easy to see that the following implications

are true: (m) => (e); (n), (o), (p), and (q) => (f); (q) => (g);

(p) => (h); (o) => (i); (r) => (j) and (k); (s) => (E).

(2) => (1): It is easy to prove that the union of two complement-

ary partial orders (irreflexive, transitive relations) forms a linear

order. Therefore, (e) and (f) => (b). Furthermore, conditions (f),

(g), (i), (j), and (k) imply (d), and conditions (f), (g), and (h)

imply that F(O+F) c F. Therefore it only remains to show that

FC1 c F. But if FC 1 n 0 $ 0, then OC n F $ 0, contradicting (i).
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If FCI n C $ 0, then CF n C 0 0, contradicting (j). Therefore,

FC-1 c F since FC- c (C-1 + 0 + F). This completes the proof. 0

Theorem 4.3

Let I, I' e I(G). I I' <=> FOF (I) = FCOF(I).

Proof: Let I = ... In } in which Ii = [ai, bi]., and let

I' = {I,..., I } in which I = [a!, b!].- Let FCOF ( = (V, C++F)

and FCOF (I') = (V, C' + 0' + F'). Then I I' <=> for all i and j,

the following are true:

() a1 < a. iff a' < a.

(iii) b < a. iff bi < a!

(iv) b < b. iff bi < bj

<=> for all i and j, the following are true:

(v) viv £ C iff viv j C C'

(vi) vivj C 0 iff viv j c 0'

(vii) vivi e F iff viv. i F'
.COF. COF(

<=> FG  (I) = F G I). 0

Thus F OF: I(G) D 0(V) yields the same equivalence classes

(i.e., chronological orderings) as F6 : I(G) + On and F L: I(G) -

G nnR n x L n .

Notice that, if D = (V, C+O+F) e D(V) is given, it can be

determined in O(VJ 3) steps whether 0 has any of the three

equivalent sets of properties in Theorem 4.2 and hence whether 0 is
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associated with a representation of G ( V, +).Although this does

not lead to a very efficient recognition algorithm for interval graphs,

it does lead to algorithms which can solve problems beyond the reach of

those presented in Chapters 2 and 3.

For example, using the results in Chapters 2 and 3, we can

determine whether a graph G has a representation in which certain

intervals are properly contained in others. However, if we desire to

know whether G has a representation in which those intervals are the

only ones properly contained in others, the results obtained earlier

are useless. We will shortly present an algorithm which will solve

this problem using Theorems 4.1 and 4.2.

Let us return to our problem in archaeological seriation. Under

a few basic assumptions, we were able to deduce that one of the

chronological orderings of G pcontains a chronological representation

of the artifacts.

Now, if the collection of graves is extensive enough, then besides

the previously mentioned assumptions, it might be reasonable to make

another assumption:

Style u appeared after style v and disappeared

before style v 1ff every grave containing style

u also contains style v.

For simplicity, let us make one additional assumption:

No two styles appear in exactly the same graves.

If two such styles exist, we simply remove one from under consideration.

As there is nothing in the data to distinguish between such styles, it
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can be assumed that they have the same interval of use.

Now we can represent the data by a mixed graph G (V, E+C). In

this form, V is the set of artifacts and

vivj c C iff every grave containing style vi

also contains style v3.

vi vj E E iff styles vi and vj appear in a

common grave but v i v C and
v vi 4 C.

Then, according to our assumptions, G' = (V, E+C) must be an

interval graph and have an interval representation {If.,..., I I f I(G')

in which viv j e C iff 1i c Ii. Furthermore, any such representation

is a possible chronological representation of the artifacts. Thus

we have the following problem.

Problem 4.4

Instance: Graph G = (V, E+C).

Question: Does G' = (V, E+C) have a representation {I,,..., In

7(G') in which viv j C C <=> Ii c lI?

Note that we have specified exactly which intervals we want to be

contained in others in the representation.

By the preceding discussion and theorems, this question is

equivalent to asking whether there exist relations 0 and F on V

such that 6 = E, F = VAV\E\C, and (V, C+O+F) F F(I(G')). This

gives us the following theorem.
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Theorem 4.5

G' has a representation as desired in Problem. 4.4 iff the following

conditions hold:

(1) xy e C NG,(X) C NG,(y);

(2) C2 C C;

(3) there exist relations 0 and F c VkV with the following

properties:

(a) =E

(b) F = VAV\E\C

(c) (O+F)2 c 0 + F

(d) F2 c F

(e) OF c F

(f) FD c F.

Proof: (=>) Given such a representation I of G' let

0 (V., C+0+F) F F(I). This 0 and F satisfy the conditions in

(3) by Theorems 4.1 and 4.2. Condition (1) is satisfied since if

Ii c I., then any interval that intersects Ii must also intersect

I., Because I i c I C Ik =I i c I , condition (2) is satisfied.

(<=) All we need to show is that D = (V, C+O+F) e F6CF(I(G')).

By (a), (b), (c), and (2), it is easy to see that D e D(V). By

Theorems 4.1 and 4.2, we need only show that conditions (e)-() are

true in Theorem 4.2. But the proofs of (e), (f), (g), (h), and (i)

are automatic. Conditions (k), (t), and (j) follow from property (1).

D II
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This theorem enables us to construct an algorithm that solves

Problem 4.4. Conditions (1) and (2) of Theorem 4.5 can be checked in

O(,VJ I ) steps. We next describe an algorithm of complexity O(IVI 3

for constructing orientations 0 and F as desired or showing that

none exist.

By ignoring C and representing VAV\E\t by H, we can state

this problem in the following manner.

Problem 4.6

Instance: Graph G = (V, E+H) with E = E and H = H.

Question: Do there exist orientations 0 of E and F of H with

the following properties:

(1) (O+F)2 c 0 + F (3) OF c F

(2) F2 c F (4) FO c F?

Henceforth, an undirected graph G = (V, E+H) will be called

partitioned if E and H consist of (disjoint) undirected sets of

edges. Also 0 will always denote an orientation of E and F an

orientation of H.

By property (1), O+F is transitive. For this reason, if

orientations 0 of E and F of H have properties (1)-(4), we

will call O+F a strongly transitive orientation (STRO) of G (or of

E+H), or say that O+F is strongly transitive.

To be able to determine whether a partitioned graph (V, E+H) has

a STRO, we need to develop some theory that is a modification of

Golumbic's results [12; 13; 14) on transitive orientations of graphs.
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It is urged that the reader study these papers simultaneously with the

following pages of this chapter (see also Pnueli, Lempel, and Even

[25]).

As motivation for the following definitions, we consider some

necessary conditions for a graph to have a strongly transitive orient-

ation. If we have a triangle two of whose edges are in H and one is

in E, then the two edges in H must both be pointed toward or both

away from their common vertex, by property (2). Properties (3) and

(4) say that, if we have a triangle two of whose edges are in E and

one is in H, then the triangle must be oriented as in Figure 4.2.

Figure 4.2: Desired orientation.

Define binaryprelations r1, r2, r3 , r4, r5 on E+H as follows

(see Figure 4.3):

bcr I  <=> either b = and cc 4 E+H

or c = c' and bb' i E+H

bcr 2b'c' <=> Jeither b = b', cc' e E, bcc H, b'c' c H

!|or c = c, bb' c E, bc e H, b'c' c H

bcr 3b'c' <-> either c = b', bc' F H, bc 1 E, b'c' E

or c' = b, b'c c H, bc c E, b'c'c E
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bcr 4b'c' feither b = b', cc' E, bc £ E, b'c' c H

or b b', cc' c E, bc c H, b'c' c E

bcr 5b'c' = either c = c', bb' £ E, bc H, b'c' £ E

or c c', bb' c E, bc E, b'c' e H.

c C' b' b

b=b' I c=c-
r1

c c' b b' b C' b' c
r 2  r 3

b=b' c' b=b' c b c=c' c=c '

r4 r 5

Figure 4.3: rl, 2 r , r, r 5 .
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Note that rV ... r are symmetric relations and r is

reflexive. They each represent a forcing of the orientations of edges

in the sense that, if G has a STRO (V, O+F) and bc c O+F, then

b'c' must also be in O+F. In brief,

r I - forcing is required for O+F to be transitive,

r2 - forcing is required for F to be transitive, and

r3, r4 , r5 - forcings are required to ensure that OF c F and

FO c F.

The reflexive transitive closure r* of r1 ,..., r5  is an

equivalence relation on E+H, partitioning E+H into what we shall

call strong implication classes of E+H. Thus abr*a'b' iff, for some

m,

ab = albIriIa2b2ri2- ri m-1 ambm = a'b'

where i im.1 c {1, 2, 3, 4, 51. Such a sequence is called a

r-chain from ab to a'b'. Golumbic defines "implication classes"

similarly, but uses only r1  since he does not consider partitioned

graphs. Each strong implication class is a union of some of Golumbic's

implication classes. What is important here is that virtually all of

his results carry through when "implication class" is replaced by

"strong implication class".

A fundamental result is the following lemma.

Strong Triangle Lemma (ST Lena)

Let a, 8, y be strong implication classes of a partitioned graph

G = (V, E+H), a # 6, a y-, having edges ab c Y, ac e B, bc c a.
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Then

(a) ab, ac, and bc are all in E, all in H, or ab £ H,

ac e H, bc c E, in which case =y

(b) if b'c' c a, then ab' E y and ac' c 8 (see Figure 4.4).

a

b c

Figure 4.4: ST Lemma.

Proof: (a): The proof consists of checking all possible 2 = 8 ways

that the three edges of the triangle could be in E or H. The only

ones that don't contradict a $ 8 and a # y are when all are in E,

all are in H, or ab e H, ac c H, bc e E, in which case abr2ac,

so a n I 0 and hence a = y.

For example, we cannot have ab e H, ac c E, bc e H, because
-1 -l

then bcr 2ba and so a n y 1 0, which means a = y , a contra-

diction.

(b): If b'c' £ a, then by the definition of a strong implication

class, there exists a r-chain

bc = b1clri b2c2r1i - ri bmcm = b'c.

1 2 M-1

The proof proceeds by induction on m. It suffices to consider the

case in which m = 2, i.e., the case where bcrib'c' for i = 1, 2,

3, 4, or 5. We consider each of these possibilities separately.
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CASE 1: bcr b'c'. Then ab' e y and ac' £8by Golumbic's

Triangle lemmia [13, p. 71).

CASE 2(a): bcr 2b'c', b = bV (see Figure 4.5).

a

H,Y s

b=b' H,cxc
H

Figure 4.5: Case 2(a).

Then bc, b'c' c H, and cc' c E by the definition of r 2  and so

ab, ac £H by part (a). If ac' J E+H, then bar Ib'c' and there-

fore y1n a (=><~=). If ac' E, then b'c'r 2ba, so

y1 n a 0 (>). Thus ac' e H and therefore acr 2ac' which means

that ac' e 6. Also ab' =ab e Y.

CASE 2(b): bcr 2b'c , c = c' (see Figure 4.6).

a
H,y ,

Hci

bH

E H,a

Y b'

Figure 4.6: Case 2(b).
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Hence abr2 ab' and therefore ab' Eyand ac' = ac c 0.

CASE 3{(a): bcr 3b'c'. c =b' (see Figure 4.7).

a
H,y a

b D~c c=b'

H E,cx

Figure 4.7: Case 3(a).

If ac' 4 E+H, then bcr4 bc' and bc'riba, so a n Y- I

Thus ac' e E+H. We claim: ab E H, ac c H. If this is not true,

then by part (a) of the lemmna, ab e E, ac E E. Now if ac' c E, then

bc'r 4ba, So ~n y Is0 (=><=).

If ac' EH, then acr 3b'c', so 0 n a =<) Thus our

claim must be true. If ac' e E, then bc'r 2ba, so a n y- I 0

(=>'<=). Thus ac' c H and so acr2 ac', and therefore ac' £ .Also

abr 2ab', so ab' c Y

CASE 3(b): bcr3b'c,. c' = b (see Figure 4.8).
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a

b=c' E OL

H
E~c H

Figure 4.8: Case 3(b).

As in Case 3(a), ab e H, ac c H, and ab' E+H. If ab' £E,

then bcr5b'c and b'cr 2ac, so a n a t (=><=). Hence ab'c H

and so abr2ab' which gives ab' £ y. Also acr2 ab =ac', so

ac, E S.

CASE 4(a): bcr 4 b'c', bV = b (see Figure 4.9)

a

b C 

Hy

'=b E ot c
H

H'ax W_E

Figure 4.9: Case 4(a).

and b'c' £H, bc E, cc' c E. As in Case 3(a), Ac' E H,

ab £H, and ac c H. But acr ac', and so ac' £ .Also
r2
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ab' ab EY

CASE 4(b): bcr 4b'c', b'V b (see Figure 4.10) and bVc E,

bc EH, cc' c E.
a

b'=b cc

H
E,oL E

ci
Figure 4.10: Case 4(b).

If ac 4E+H, then b'c'r Iba, and so n y- I 0 ( ). if

ac EE, then b'crl ba, so a n y- I (=><=). Hence ac c H

and therefore acr2ac' which means ace 1E B. Also ab' = ab Ey.

CASE 5(a): bcr 5 bc', c =c' (see Figure 4.11) and bc c E,

b'c' -E H, b'b e E.

a

H,y ,

b E 9a c=c'

H
E H,ci

Figure 4.11: Case 5(a).

If ab' 4 E+H, then acr 1b'c' and so 8 n a =c) Now, as
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in Case 3, ab c H, ac E H. If ab' c E, then b'c'r 2ac, so

a n a t 0 (=><=). Thus ab' £ H and so abr2ab' which means

ab' E -Y. Also ac' = ac .

CASE 5(b): bcr 5b'c', c = c' (see Figure 4.12)

b c=c'

H
E Eoa

.Pb'

Figure 4.12: Case 5(b).

and bc c H, b'c' e E, bb' c E. Then ab c H, ac c H by part (a)

of the lemma. If ab' j E+H, then acrlb'c', so a n a 0 (=<=).

If ab' e E, then acr 5b'c', so 6 n a f 0 (=><=). Thus ab' c H

and so abr 2ab' which means ab' e y. Also ac' = ac £ B. This

completes the proof of the ST Lemma. 0

Corollary ST

Let a, a, y be strong implication classes of a partitioned graph

G (V, E+H), y B, a 9 y , 8 9 y, having edges ab e y, ac c 8,

bc ca. Then

(a) ab, ac, bc are all in H or all in E; and

(b) if b'c' £ a and a'b' c y, then a'c' c 8.
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Proof: (a) Since a $ y, part (a) of the ST Lemma shows that all

three edges are in H or all are in E.

(b) We apply the ST Lemma using b'c' e a to get ac' c a,

ab' y. We apply it again to the triangle in Figure 4.13, using

b'a' -y- to get c'a' 8 , i.e., a'c' a. 0

b 0a

Y

Figure 4.13: Corollary ST.

We need one more fundamental result.

Theorem 4.7

For any union U of strong implication classes of a partitioned graph

G - (V, E+H), if U is transitive, then U is also strongly

transitive.

Proof: Let 0u and Fu  denote the edges of U in E and in H,

respectively. We are assuming (0u + Fu)2 c 0u + F . All that remains

to be shown are F 2 c Fu, 0 F c Fu, and FuO c F.
u U u u uu U,

(a) Let ab, bc e Fu . Then ac c 0u + Fu, by transitivity.

If ac e Ou, then abr 2cb, so cb c Fu . But then bc e Fu and

cb E Fu which contradicts the transitivity of 0u + F . Hence

ac( F.
U
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(b) Let ab c FU$ bc 0 O U  If ac 0 Ou  then aCr 3cb, so

cb 0 and bc e O, a contradiction. Hence ac e F
u u U*

(c) Let ab c 0u, bc E F . If ac c 0u, then acr3ba, so

ba c 0u and ab e 0u, a contradiction. Hence ac e Fu . This

completes the proof. 0

Because of the ST Lemma and Theorem 4.7, virtually all of the

results by Golumbic [13] carry over to strongly transitive orientations.

The proofs apply almost verbatim upon replacing "implication classes"

by "strong implication classes", "transitive orientation" by

"strongly transitive orientation", and "E" by "E+H". Thus most

such proofs will be omitted here. Basically, Golumbic's methods

suffice to prove transitivity for our case, and then Theorem 4.7 gives

strong transitivity.

Theorem G.l (This theorem corresponds to Golumbic's Theorem 1.)

If O+F is a STRQ of a partitioned graph (V, E+H) and a is a strong

implication class of E+H, then a n a 1 0 and either (O+F) n a=
-1

or (O+F) n = .

Theorem G.2 (This theorem corresponds to Golumbic's Theorem 2.)

Let a be a strong implication class of a partitioned graph (V, E+H).

Then either

(1) a i -~, or -l

(II) a n a 0, a and a are strongly transitive, and

they are the only STRO's of .
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Sketch of proof of Theorem G.2: Using the ST Lemma in Golumbic's

proof of his Theorem 2, we obtain the result that a and a- are
-l -l

transitive, if a n a = 0. Then by Theorem 4.7, a and a are

strongly transitive. 0

A complete undirected subgraph (V s, S) on m+l vertices of a

partitioned graph G = (V, E+H) will be called a simplex of dimension

m if each undirected edge ab of S is contained in a different

member of {a: a is a strong implication class of E+H}. Note that

S c E or S c H by the Corollary ST.

A multiplex of dimension m generated by a simplex S of

dimension m is the subgraph (VM, M) of G defined by

M {vv.: vivjr*xy for some xy e S}

= Ua, the union being over all strong implication

classes a such that a n S t 0.

Theorem G.3 (This theorem corresponds to Cor. 8, Thm. 9, and Thm. 10

of Golumbic.)

1. Let Mc M2 be multiplexes.

(a) Every simplex generating Ml is contained in a simplex

generating M2.

(b) Every simplex generating M2 contains a subsimplex which

generates MI .
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2. If M is a multiplex generated by a simplex S, then M is a

maximal multiplex iff S is a maximal simplex.

3. Two maximal multiplexes are equal or have disjoint edge sets.

Theorem G.4 (This theorem correspondsto Golumbic's Thms. 12 and 13.)

1. Any maximal multiplex M of dimension m which has a STRO, has

(m+l)! STRO's.

2. Let E+H = M1 + ... + Mk be a partition of E+H into maximal

multiplexes. If (V, E+H) has a STRO, then the number of STRO's

that (V, E+H) has is nk=l(mi + l)! where mi = dimension of

M i •

Sketch of proof of Theorem G.4: Golumbic shows that any of the (rm+l)!

transitive orientations of a maximal simplex in M extends (via r*)

to a transitive orientation of M. Then Theorem 4.7 shows that it

extends to a STRO of M.

Golumbic's Theorem 13 shows that any one of the possible orienta-

tions can be chosen for each Mi and the sum of all these oriented

multiplexes gives a transitive orientation to (V, E+H). Theorem 4.7

again gives us the result that it is actually a STRO. 0

Let (V, E+H) be a partitioned graph.

E+H = 1 ; 82 + "'" + ;k

is called a strong decomposition of G if i is a strong implication

class of ii + + ik for i = I,..., k.
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Theorem G.5 (STRO Theorem; this theorem corresponds to Golumbic's

Thin. 17.)

Let (V, E+H) be a partitioned graph with strong decomposition

E+H = I + ... + k' The following are equivalent;

(a) (V, E+H) has a STRO.
-1

(b) a n a = for all strong implication classes a of E+H.

(c) Bi n = 0 for i = 1,..., k.

Furthermore, when these hold, BI + .. + Bk is a STRO of E+H.

Again, Golumbic's theorem, with the appropriate changes made,

proves the transitivity and Theorem 4.7 then proves the strong

transi tivi ty.

The rest of Golumbic's results in [13] also apply to STRO's, but

they are not particularly important to the present discussion, so will

not be further explored.

Now, similar to the algorithm constructed by Golumbic, Theorems

G.4 and G.5 lead to an O(6.IE+HI)- time and O(jE+Hj + JVJ) - space

algorithm for determining if a partitioned graph (V, E+H) has a STRO

and constructing one if possible. Here 6 is the maximum degree of

the vertices.

See Golumbic [14] for a parallel presentation to the following

algorithm. Our algorithm uses the function

CLASS (i, j) = 0 if vivj 4 E+H

k if v i v has been assigned to Bk

-k if viv j has been assigned to Bk-l

undefined if viv j has not yet been assigned.
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Input: A partitioned grap G = (V, E+H) in the form of adjacency sets

ADJ(i) = {j: vivi e E+H).

Output: A strong decomposition of G given by the function CLASS and

a variable FLAG which is 0 if G has any STRO's and 1 otherwise.

If FLAG is 0, a STRO is given by those edges whose CLASS is positive.

Method: Initially FLAG -0. By the kth iteration, a + ." + k-l

has been determined, and FLAG has been changed to I if Bi n B. / 0

for any i = 1,..., k-l. In the kth iteration, an unexplored edge ek

is chosen. The recursive calls of EXPLORE and FORCE cause the explor-

ation of the whole strong implication class of ek in E+H\\

(This is due to the fact that we ignore edges whose CLASS value is

between -k and k.) This yields Bk' and if 8 k n kI  0, FLAG

is set to 1.

Algorithm 4.8

initialize: k 0 0; FLAG 0;

for each edge viv j c E+H do

if CLASS (i, j) is undefined then

begin

k - k+l;

CLASS (i, j) - k; CLASS (j, i) 4-k

EXPLORE (i, j)

end;
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end

end

Procedure EXPLORE (i, j):

for each m c ADJ(i) such that [m J ADJ(j) or ICLASS (j, m)j <k] do

FORCE i, m);

for each m E ADJ(j) such that [m J ADJ(i) or ICLASS (i, m)l <k]

do FORCE (m, j);

for each m such that vjv m 9 viv j c H, vivm E E do FORCE (m, j);

for each m such that vivjViVmEH, VmVi E E do FORCE (i, m);

for each m such that viv j, vjvim e E, viv m e H do

FORCE (j, m); FORCE (i, m)

end;

for each m such that vi ,  vm £ E, vjv m v H do

FORCE (m, i); FORCE (m, j)

end;

for each m such that viv j E H, vi v m  E, vjvm E E do

FORCE (i, m); FORCE (m, j)

end

return
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Procedure FORCE (i, j):

if CLASS (i, j) is undefined then

begin

CLASS (, j) k; CLASS (j, i) -k;

EXPLORE (i, j)

end

else

if CLASS (i, j) = -k then

CLASS (i, j) k; FLAG *- 1;

EXPLORE (i, j)

end

return

We store the adjacency sets as linked lists as described by

Golumbic, but use five fields for each element of list ADJ(i )

representing edge vivi, containing respectively, j, a field indicat-

ing whether vivj F E or vivj e H, CLASS (i, j), pointer to CLASS

(j, i), and a pointer to the next element on ADJ (i). Then the

storage requirements are O(IVI + IE+HI) and Golumbic's analysis

shows that the algorithm takes O(6.IE+Hl) steps.

As Golumbic mentions, Theorems G.3 and G.4 can be used to count

the number of STRO's a graph has. All we need do is make a local

search of edges by picking an edge at random and building larger

simplices, each containing its predecessor, until we have a maximal

simplex. This simplex will generate a maximal multiplex.
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By methods very similar to Algorithm 4.8, the enumeration can be

done in O(6-.IE+HI) steps using OU(VI + jE+HI) storage spaces. The

details are left as an exercise for the reader.

4.2 A Generalization

Problem 4.4 presents a complete undirected graph whose edges have

been partitioned into three sets: C, E, and H = VAV\E\C, one of

which (C) has been oriented. It asks for orientations of E and H

with certain properties.

This view leads naturally to the question: What if one of the

sets E or H is initially oriented instead of C? Or more generally,

what if some of the edges of C, some of E, and some of H are

oriented? When can these oriented sets of edges be extended to

orientations of C, E, and H with the desired properties?

For the rest of this chapter, E will not necessarily be an

undirected set of edges, as was previously the case.

Problem 4.9

Instance: Relations M, E, H such that M+V+ A = WV.

Question: Do there exist orientations C, 0, and F of M, E, and H,

respectively, so that (V, C+O+F) c F OF(I(G)) where

G = (V, A+E)?

To solve this problem, it is helpful to define:
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C = IV V M: Vivk E+M and viVk E H, for some Vk0,

M' = IViv j  M; vjv i  M),

E' = {viv j E E: viv i  E},

H' {v.v. H: vjvi H).

Theorem 4.10

There exist orientation C, 0, F as desired in Problem 4.9 iff

(a) M' u C can be extended to a transitive orientation C of

M, and

(b) E' + H' can be extended to a strongly transitive orientation

O+F of E+H.

Proof: (<:) Requiring C c C ensures that conditions (j), (k), and

(k) hold in Theorem 4.2. The other conditions (e)-(i) hold by the

transitivity of C and strong transitivity of O+F. Thus by Theorems

4.1 and 4.2, C, 0, and F are the desired orientations.

(=>) If (V, C+O+F) e FCOF(I), for some I = {l ,... I n  I(G),Gn

then by Theorems 4.1 and 4.2, C is transitive and O+F is strongly

transitive. Furthermore, E' c 0, H' c F, and M' c C. To show that

C c C, we assume this is not so. Then there exist vi, vj, vk such

that vvi  C, vjVk c E+M and vivk c H. But then I. c I.,

Ik n I , and Ik n Ii = 0. Clearly this cannot happen and so

C c C. This completes the proof. 0

Theorem 4.10 has now reduced the solution of Problem 4.7 to the

solution of the following two problems.
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Problem 4.11

Instance: Mixed graph G : (V, E).

Question: Does there exist a transitive orientation T of G?

Problem 4.12

Instance: Graph G = (V, E+H), with E n R = 0.

Question: Do there exist orientations 0 -of E and F of H such

that (V, O+F) is a strongly transitive orientation of

(V, E+R)?

These problems have nearly identical solutions. Let

a(E') = [viv. i C: vivjr*xy for some xy E E'l,

a(E' + H') = {v ivj E E+H: viv r*xy for some xy e E' + H'},

where in the first set, r* is the transitive closure of rl , where-

as in the second set, r* is the transitive closure of ri, r2, r3,

r4 , and r59 ant where El and H' are defined prior to Theorem

4.10.

Theorem 4.13

There is a relation T as desired in Problem 4.11 iff

(a) (V, E) is transitively orientable, and

(b) a(E') is acyclic.

")eorem 4.14

"oe- are relations 0 and F as desired in Problem 4.12 iff
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(a) (V, E+) is strongly transitively orientable, and

(b) cL(E' + H') is acyclic.

Proof of Theorem 4.13: Condition (a) is clearly necessary, and (b) is
necessary because, if vivjI~xy for some xy c E', then v.v. must

be in the transitive orientation T as well as xy.

To prove the sufficiency of (a) and (b), we choose a maximal

simplex SM = (VM, EM) from each maximal multiplex M of (V, E).

By Theorem G.4, the m+1 vertices of a maximal simplex of dimension

m can be linearly ordered in an arbitrary manner, and, if this is

done for each maximal multiplex, we can extend these orders via r* to

form a transitive orientation of (V, E). Hence if a(E') contains

no cycles, a(E') n EM  can be extended to form a linear order of V

for each SM, which in turn can be extended via r* to an orientation

of M. These extensions give the desired orientation of E. 0

The proof of Theorem 4.14 is almost the same.

Parts (a) and (b) in Theorems 4.13 and 4.14 can be checked in

time O(6.1E1) and O(6.IE+Hl) respectively. One algorithm for

Theorem 4.13 consists of first extending E' to a(E'). Then

(V, a(E')) is checked for cycles. (Topological sorting algorithms

can perform this step in time O(jc(E')j + IVJ).) The remaining

implication classes can then be determined and checked to see if

(V, E) is transitively orientable. If so, we can construct the

desired orientation by choosing a maximal simplex SM = (VMS EM) from
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each maximal multiplex M, and extending ci(E') n E Mto a linear

order of V M (again this can be done by a topological sorting

procedure). These orientations can then be extended to the whole graph.

The task of producing a detailed algorithm is left as an exercise for

the reader. Minor modifications of this algorithm will yield an

algorithm for Theorem 4.14 also.

In the case of Problems 4.9, 4.11, and 4.12, in contrast to

Problem 4.4, it is not easy to determine the number of solutions. This

is due to the fact that, in these cases, we are extending an acyclic

set of edges to a linear ordering in each maximal simplex. Thus to

determine the number of solutions, it is necessary and sufficient to

have an efficient algorithm for determining how many linear extensions

a partial order has. No such algorithm is known by the author. Knuth

and Szwarcfiter [22] have constructed an algorithm which determines

all such total orders, and which is linear in each output, but this

is unfortunately not the algorithm we desire.



CHAPTER 5: APPLICATIONS TO SPECIAL GRAPHS

The results in Chapter 4 lead to interesting characterizations of

several types of graphs including proper interval graphs and proper

circular arc graphs.

5.1 Proper Interval Graphs

The following theorem is related to the special case of Theorem

4.5 where C = 0.

Theorem 5.1

Let G = (V, E) be an (undirected) graph. The following are equiva-

lent:

(a) G is a proper interval graph;

(b) There exist orientations 0 of E and F of Ec such that:

(i) OF c F,

(ii) FO c F, and

(iii) (O+F)2 c O+F;

(c) There exists an acyclic orientation 0 of E such that

(*) ab, bc c E and ac c Ec => ab, bc e 0 or cb, ba c 0

(see Figure 5.1).

b b

a c a 0 C

Figure 5.1: Property (*).
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Proof: We show (a)=>(b)->(c)=>(a).

(a)=>(b): Let I = {I9,..., InI I(G) be a proper interval

representation of G in which Ii = [ai , bi], i = 1,..., n.

Construct orientations 0 and F as follows. For all i and j, let

viv j e 0 if a < a < b < b and

vi e F if ai < bi < a. < b..

If viv. e 0 and v.vk e F, then ai < a. < b. < b < a < b so

ViVk E F. This proves (i). Properties (ii) and (iii) are proved

similarly.

(b)=>(c): Given orientations 0 and F as in (b), we claim that

0 has property (*) in (c) and is acyclic. By (iii) 0 is acyclic.
c "

Now let ab, bc e E and ac e EC. If ac e F, then by (i) and (ii),

we must have bc c 0 and ab e 0. Similarly, if ca c F, then

cb, ba e 0.

(c)=>(a): We show that G can have no induced subgraphs which

are K1 3, IV2, Vl , or III, n > 4, (see Figures 1.1 and 1.4) and

therefore by Theorem 1.4, G is a proper interval graph. If K1,3

is an induced subgraph of G (see Figure 5.2), then without loss of

generality ab c 0. Hence by property (*), bc e 0. But ab E 0 =>

bd c 0, and bc c 0 => db c 0, a contradiction. So K, 3 cannot

be an induced subgraph of G. Similarly, we can easily show that

IV2, V1 and IIIn, n > 4, cannot be induced subgraphs of G. 0
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d

b

a ; c

Figure 5.2: Orienting K1 ,3.

A semi-order is a graph (V, P) such that for all x, y, z, w E V:

xy c P and zw e P => xw c P or zy e P, and

xy c P and yz e P => xw c P or wz c P.

Note that a semi-order is transitive.

Theorem 5.2

Let F be a transitive relation on a finite set V. Then (V, F) is

a semi-order iff F can be extended to a linear order O+F on V

such that OF c F and FO c F.

Proof: By a result of Roberts (28, Theorems 3 and 6], an irreflexive

relation F on a finite set V forms a semi-order iff there exists

a proper interval representation {Il,...,I n1 of (V, (M)c) such

that vivi c F <=> Ii < ri < I <c r., where Ii = [ti, rl], for

i 1,...., n.
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Given such a representation in I((V, (w)c)), define the

relation 0 as follows:

viv. 0 if I.i < Z. < ri < r.

It is easy to see that O+F is a linear order such that OF c F and

FO c F.

Conversely, let O+F be a linear order such that OF c F and

FO c F. Since F2 c F, Theorem 4.5 states that D = (V, O+F) is

associated with a representation of (V, O) = (V, (F) c), which is the

desired proper interval representation. Hence (V, F) is a semi-

order. 0

Using Theorem 5.1 and the tools developed in Chapter 4, we can

construct an algorithm of complexity O(V1 3 ) that recognizes proper

interval graphs and determines the number of chronological orderings

of a graph that consist of proper interval representations (such

chronological orderings will be called proper chronological orderings).

However, the algorithm described in conjunction with Theorem 1.5 can

perform these operations in linear time, so there appears to be little

reason to construct an algorithm based on Theorem 5.1. The following

discussion shows how the linear-time recognition algorithm can also be

used to enumerate the proper chronological orderings of a graph.

Recall that G = (V, E) is a proper interval graph iff its

augmented adjacency matrix M has the consecutive ones property.

Each consecutive ones form of M gives rise to a unique proper
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chronological ordering of G. Furthermore, all such chronological

orderings arise in this way, so the number of proper chronological

orderings of G is equal to the number of consecutive ones forms

of M. As described by Booth [4] or Booth and Lueker [5; 6], testing

for consecutive ones and counting the number of consecutive ones forms

of a matrix can be done in linear time and space, so we obtain the

desired result.

Notice that this does not give all chronological orderings of G,

because G may well have representations in which one interval is

properly contained in another.

It should also be pointed out that the number of orientations 0

in Theorem 5.1(c) does not correspond to the number of proper chrono-

logical orderings of G. This is due to the fact that such orientations

say nothing about the order of the connected components of G. How-

ever, for connected graphs, it can be shown that the number of such

orientations is equal to the number of proper chronological orderings

of the graph.

5.2 A Relationship among Some Graphs

Theorems 5.1 and 4.5 lead to an interesting relationship among

several types of graphs.

Let G = (V, E) be an undirected graph. G is called a

comparability graph if it can be transitively oriented. G is a rigid-

circuit graph (or triangulated graph or chordal graph) if it does not

contain C no n 4, as an induced subgraph. G is a nested interval
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grphif there exists a representation {I,..., In} € 1(G) such that

if viv j c E, then I i c I or I. C I i. That is, every edge

indicates containment, which makes G a kind of "dual" to a proper

interval graph.

Let B, B2, B3  be the oriented graphs shown in Figure 5.3. G

is called a U-graph, where U c {B1, B2, B3), if it has an acyclic

orientation 0 such that (V, 0) does not contain any of the graphs

in {Bl , B2, B3}\U as induced subgraphs. For example, every undirected

graph is a {Bl, B2, B31 - graph, whereas the 0-graphs are exactly the

complete graphs.

B1 B2 8 3

Figure 5.3: Bi, B2, B3.

Theorem 5.3

Let G = (V, E) be an undirected graph.

1. G is a {Bl, B3)-graph <=> G is a {B2, B3)-graph

<=> G is a rigid-circuit graph.

2. G is a {Bil B2}-graph <=> G is a comparability graph.

3. G is a [B3)-graph <=> G is a proper interval graph.

4. G is a {B1}-graph <=> G is a [B2I- graph

<=> G does not contain 1114 or D

(see Figure 5.4) as induced subgraphs

<=> G is a nested interval graph.
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I4  D

Figure 5.4: 1114 and D.

Proof: 1. This is proved by Rose [30] and Kesel'man [20].

2. Any acyclic orientation of G not containing B3  is clearly

transitive. The converse is obvious.

3. This is just the equivalence of (a) and (c) in Theorem 5.1.

4. The first equivalence is obvious.

The second equivalence is the main result of Wolk [36; 37] (see

also Jung [17]). For the third equivalence, let {If,..., In } E I(G)

be a representation of a nested interval graph G in which viv j E E

=> Ii c l or I. c Ii. Define an orientation 0 of E as follows:

viv e 0 iff I i c I. This shows G is a {B1}- graph.

Conversely, let G be a (B1)- graph. Then by Wolk [37] , Gc has

a transitive orientation F. Let C be the orientation of E such

that (V, C) does not contain B1  as an induced subgraph. Then this

C and F satisfy the conditions in Theorem 4.5 (where the relation

0 = 0), so this theorem gives the desired result that G is a nested
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interval graph. 0

Let w(G) denote the clique number of a graph G, that is, the

size of the largest clique of G. Let x(G) denote the chromatic

number of G, that is, the minimum number of colors needed to properly

color the vertices of G. An undirected graph G is called perfect

if w(G') = X(G') for all induced subgraphs G' of G. See Golumbic

[12] for references to many results on perfect graphs.

Corollary 5.4

Every U-graph for which U t {B1, B2, B3) is perfect.

Proof: Rigid-circuit graphs, comparability graphs, and interval

graphs are all perfect. See, for example, Golumbic [12]. 0

5.3 Proper Circular Arc Graphs

Can the results of Theorem 5.1 be generalized to circular arc

graphs? Equivalence (b) cannot easily be generalized because, if two

arcs do not intersect, we cannot say which one is to the "right" or

"left" of the other, i.e., there is no relation for arcs on a circle

corresponding to the relation F for intervals of the line.

However, property (c) of Theorem 5.1 does generalize, if we

restrict our attention to connected graphs. Therefore we will first

consider the case where the graph is not connected.

MM6.-_
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Theorem 5.5

Let G be a disconnected, undirected graph. G is a proper circular

arc graph iff G is a proper interval graph.

Proof: (=) This is obvious.(=>) Any proper circular arc represent-

ation of G must miss at least two points of the circle since G is

disconnected. We can cut the circle at one of those points and, upon

straightening it out, obtain a proper interval representation of G. D

A CORE-cycle of a graph (V, E) is a sequence [vi,..., vm] of

(not necessarily distinct) vertices in V with the following three

properties:

(I) vivi+ 1 c E for i = I,..., m-1, and VmV1 E E,

(2) vi v i+2 4 E for i =,..., m-2, and VmlVl 4 E, vmv2 j E,

(3) vi = vi+ 2, where i+2 is given modulo m, for an odd

number of vertices vi in the sequence.

We remark that a CORE-cycle is not necessarily a cycle or circuit

as defined in section 1.1 because the vertices of the sequence need

not be distinct.

Theorem 5.6

Let G = (V, E) be a connected graph. The following are equivalent:

(a) G is a proper circular arc graph;

(b) There exists an orientation 0 of E in which (see Figure

5.1)

(*) ab, bc c E and ac £ Ec => ab, bc c 0 or cb, ba c 0;
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(c) G has no CORE-cycles;

(d) G does not have LPCm nor sgl* as induced subgraphs, and

Gc does not have EPCm, OPCm, sgl, sg2, sg3, sg4, sg5 as

induced subgraphs (see Figure 5.5).

Proof: We will show that (a)=>(b)=>(c)=>(d)=>(a).

(a)=>(b): By a result of Golumbic [12], every proper circular

arc graph has a proper circular arc representation in which no two

arcs together cover the entire circle. Let A = {AI,..., AnI be such

a representation of G. Furthermore, we can assume that all 2n end-

points of the arcs are distinct. Let Ai have counterclockwise

endpoint ti and clockwise endpoint r. for i 1,..., n.

We construct 0 as follows: If viv j c E, then moving clockwise

around the circle, the endpoints of Ai and A. form the sequence

[Zi, j., ri, r)j or [,ri,rj,ri]. In the former case, we let

viv j  0, and in the latter, we let vjv i e 0. We do this for all

viv j E E. The resulting orientation of G is said to correspond to

the representation A. Now we need only show that 0 has property (*).

c

tj F Ai n Ak t 0, contradicting vivk E EC. If vjv i, vv k  0,

then r. e Ai n Ak t 0, a contradiction. Hence vvi , vjvk e 0 or

VkV., vivi  0.

(b)=>(c): Suppose C = [vl,..., Vm] is a sequence of vertices

in V with properties (1) and (?) in the definition of a CORE-cycle.
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0a a

e C

LPC m sgl *

(LPC mplus isolated vertex) (sgl plus isolated vertex)

LPC m is a chordless cycle with nA4 vertices.

OPCM is a chordless cycle with mA 3 vertices, mr odd.

EPCm is a chordless cycle with m A6 vertices, m even.

Ow0 v m 2  m v
vm v 2c a d

2

v v3  52  0

4V7 sg2
OPCM* EPC

(OPCM plus isolated vertex)

c a d b b e

ga
2 ~ ba f

ad gc

sg3 s94 sg5

Figure 5.5: Forbidden subgraphs.
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Thei, in any orientation 0 of E with property (*), successive

edges vivi+1 1, V i+1Vi+2 in C must be oriented in the same direction

(i.e, both viv i+1, vi+i v i+2 e 0 or both vi+ 2vi+ 1, vi+1v i  0),

unless v i = v i+2, in which case their orientations are in opposite

directions (here i is given modulo m). In other words, the orient-

ation of the edges in the cycle reverses every time a vi M is

encountered for which vi = v i+2* Since we must end up with the same

orientation for the edge v1v2 with which we started, the cycle can

have only an even number of vi such that vi = vi+ 2 .

(c)=>(d): We will show that each of the forbidden subgraphs of

G and the complements of the forbidden subgraphs of Gc contains a

CORE-cycle. The labels correspond to those shown in Figure 5.5.

OPCm: (OPCm )c contains the CORE-cycle [vl , c, v2, w,..., vn , i.

EPCm: (EPCm)c contains the CORE-cycle [vi, v2,..., Vn...l , vn,

v2].

sgl: (See Figure 5.5, but ignore the isolated vertex.) (sgl) c

contains the CORE-cycle [b,a,b,c,e,f,a,f,d,c,g,a,g,e,d].

sg2: (sgZ)c contains the CORE-cycle [c,b,a,b,f,e,f,g,a,g,d3.

,g3: (sg3)c contains the CORE-cycle [c,bg,d,g,a,g,f,c,e].

s94: (sg4)c contains the CORE-cycle [g,d,c,a,f,g,f,b,c,b,e,b,

a,b,d].

ia5: (sg5)c contains the CORE-cycle [b,a,b,c,e,f,a,f,d,c,g,a,

g,e,d].

LPCm: Let LPCm = vl!..., vm], m a 4, and let w be a vertex
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that is not adjacent to LPCm, Since G is connected, there exists

a shortest path P from w to LPCm* Without loss of generality,

P =[v = w1 w2,..., wk = w]. Clearly we can assume k - 3; if

k > 3, we can replace w with w3 . (The vertex w3 will be isolated

from LPCm  by the minimality of P.)

CASE 1: w2 is adjacent to only v, in LPCm . Then

[w2 , vl , v2,..., v m , IV is a CORE-cycle.

CASE 2: w2 is adjacent only to v, and v2, or w2 is

adjacent only to v, and vm . Without loss of generality, w2 is

adjacent to v1  and v2. Then [, w2 9 v 3,..., vm vl, w2]  is

a CORE-cycle.

CASE 3: w2 is adjacent to v, and some vi , i # 2 or m.

Then [w, w2 , v 2, viV w2]  is a CORE-cycle.

sgl : Consider Figure 5.6 below. As before, let [u = w3 , w2 , wl]

be the shortest path from w to sgl (i.e., wI  is a vertex

of sgl).

CASE 1: w2 is not adjacent to a,c or e. Without loss of

generality, wI = b. Then [a,bw 2,b,c,b3 is a CORE-cycle. Since

in all the remaining cases, a, c or e is adjacent to w2, we will

assume w, a a.

CASE 2: N(w2 ) n sgl = {a). Then [w2 ,a,f,e,f,b,c,b,a) is a

CORE-cycle.
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CASE 3: {a, d) c N((2) , (a, c) c N(w2), or {a, e} c N(w2).

Then [WW 2,2,a,w2,d,2 , [W, 2,a,w2,e,w23, or [ww 2,a, w2,cw 2  are

respective CORE-cycles.

CASE 4: N~w2 ) n sgl = {a, b) or{a, f). Then [uw 2 ,b,c,b,f,e,f,

"~23 or [ww 2 ,f,e,f,b,c,b,a,w2] are respective CORE-cycles.

CASE 5: N(w2) n sgl = {a,b,f}. Then [cw,2 ,f,e,f,b,c,bw 2] is

a CORE-cycle.

(d)=>(a): This is a theorem of Tucker [34, p. 172]. 0

a

f b_

d

Figure 5.6: The graph sgl*.

The similarities between equivalence (b) in Theorem 5.6 and

Golumbic's work [13) on transitive orientations of graphs should be

noted. If we attempt to orient a graph so that it has property (*),

the orientation of one edge may force neighboring edges into particu-

lar orientations. In this way, we obtain equivalence classes of edges,

in which the orientation of any one edge forces the orientations of
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all the other edges in its class. Furthermore, for any such class

0, it is true that B = for some implication class a as defined

by Golumbic.

We remark that there appears to be little purpose in using

Theorem 5.6 for constructing a recognition algorithm for proper

circular arc graphs, due to the fact that a linear-time recognition

algorithm already exists (see Booth (4, p. 120]).

Furthermore, equivalence (b) is not very useful for the enumera-

tion of "chronological orderings" of proper circular arc graphs.

This is due to the fact that not all orientations 0 of E with

property (*) correspond to a proper circular arc representation of G

as defined in the proof of Theorem 5.6 (see Figure 5.7). The following

theorem characterizes those orientations which do. A Hamiltonian

path (or circuit) in a graph (V, E) is one which contains all the

vertices of V.

Theorem 5.7

Let G = (V, E) be a connected graph and let 0 be an orientation of

E. Then G has a proper circular arc representation to which the

ordering 0 correspondsiff (V, 0) contains a Hamiltonian path or

circuit P = [v1,..., vn]  in which, for all i, V1 = {vV: viv F 0)

consists of consecutive members of P, and for which IVij s JVi+ l I + 1,

where i is given modulo n if P is a circuit.



89

vi vi

v 4 Cv2 42
2 v4  v2

v3  v3

G = (V, E) (V, 0)

vA
1  A2

v v
42

A3
A4

(V, 0

Figure 5.7: An example for Theorem 5.7. The graph (V, 0 ) has
no corresponding representation. The graph (V, 02) has the corre-
sponding representation in the lower right figure.

Proof: (=>) Let (A,,..., A.) be a representation of G to which 0

corresponds and let Ai have counterclockwise endpoint Ii" If

lt, 12 "...' n] is the clockwise order of the endpoints of the Ai,
then it is easy to see that P = [v1,..., vnI (or some cyclic

permutation of this) is the desired path or circuit.

(<=) We construct the desired representation as follows. We

consider an n-hour clock and initially represent vi by the clockwise



arc Ai starting at i o'clock and ending at i + JVij o'clock.

However, some arcs may have the same clockwise endpoint. If

{Ak , Ak+lI,..., Ak+sl (the indices being given modulo n) all end at

p o'clock, then we replace Aki by the clockwise arc A' . which' k~i

starts at k+i o'clock and ends at p + s+T o'clock. The set

{Aj,..., Ad1 is the desired representation. 0

Ii



CHAPTER 6: ENUMERATION OF CHRONOLOGICAL ORDERINGS

The preceding chapters have described various ways of determining

whether an undirected graph has a representation (or chronological

ordering) which satisfies certain restrictions. But in very few cases

were we also able to determine how many chronological orderings satisfy

those restrictions. The following problem is the main topic of this

chapter. We remark here that our discussion will be mainly expository

in nature and will contain no major new results.

Problem 6.1

Instance: Interval graph G.

Question: How many chronological orderings does G have?

Fred Roberts [27, pp. 36-37; 26, pp. 118-122] discusses this

question and notes that it was only recently determined how many

chronological orderings a graph G has that differ in the partial

order they induce on Gc. This number can be courted using the tools

of Booth and Lueker [5; 63 or Golumbic [12; 13). The following

discussion gives a more complete answer to Problem 6.1, but in a some-

what unsatisfactory way.

Let M be a maximal clique-vertex incidence matrix of G in

consecutive ones form. As discussed in the introduction, we can

easily construct a representation of G from M. (If the first 1 in

column i is in the a i-th row and the last 1 is in the bi-th row of

M, then we represent vertex vi by Ii~ = [a1, b.).) Note however

that not all endpoints will be distinct. Nevertheless, we can stretch
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each interval a certain amount to make them distinct, without changing

the intersection properties of the intervals. To determine how many

different ways we can do this, we let

ViM [resp. V = {v. cV: the right [resp. left]
VR(i) VL(i)] ='i'

endpoint of I is equal to i}.

(See Figure 6.1.) We can arbitrarily linearly order the elements in

Meach VR(i) and then stretch the right ends of each interval whose

vertex is in VR(i) so that they are ordered along the line in this

VwMi), there are IVM (i)! ways of doing this. Away. For each
R 'LR~iio on s

similar thing can be done for all V(i). Each resulting representa-

tion belongs to a different chronological ordering of G. Thus

starting from the matrix M, we can construct representations

corresponding to

m M M
nt (IVR i)I!)(IVL(i)I!)
i=l

chronological orderings of G, where m is the number of maximal

cliques in G.

Furthermore, we can repeat this procedure for every consecutive

ones form of the maximal clique-vertex incidence matrix. It is not

hard to show that all the chronological orderings represented by

modifying one consecutiveones form of the matrix will be distinct from

those formed by modifying another consecutive ones form of the matrix,

and further, that all possible chronological orderings of G will arise

in one of these situations. Thus we have the following:
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G The vertices of the
maximal cliques:

V2v1vI A: {v1, v2 }

v2 B: {v2, v3, v4}
v5 v3 C: {v2, v4, v5}

v 4  The matrix M:

vl v2 v3 v4 v5

1  23450

B 0 1 1 1 0
C0l 1 0

Representation derived from M: VM  and VM

vR L

0 1 2 3 V M (l) (V f 1  V(1) f v1,v2

11 = [1,1] v (2) - {v3} v (2) = {v4,v31
12 = [1,3] V M(3) {vv v vM(3) {v
13 = [2,2] R 22v59v 4  L 5

14 = [2,3]

15 = [3,3]

flew representation with the endpoints ordered as written in VR and VL

1 2 3

Il

12

13

14

15

Figure 6.1: An example for Proposition 6.1.



94

Proposition 6.2

Let G = (V, E) be an interval graph and let {M(l), M(2),..., M(t))

be the set of consecutive ones forms of the maximal clique-vertex

incidence matrix of G. If m is the number of maximal cliques of G,

then the number of chonological orderings of G is

z m M(k) .M(k) i l .I n IV (i)l!" IVL

k=l i=l

We can state this another way. Let I(M) be the set of all

chronological orderings of G for which the matrix is of the form M.

Then

I(M)i = n (i)l! Iv (i)IzM I i=l RL

and the number of chronological orderings of G is equal to 117(M) I,

the sum being over all consecutive ones forms M of the maximal

clique-vertex incidence matrix. In the notation of Proposition 6.2,
£

this is I II(M(k))l. In other words, the set {M(l),..., M(k)}
k=l

partitions the set of chronological orderings of G into I(M(l))+

+ I(M(A)).

Each consecutive ones form of the matrix corresponds to exactly

one transitive orientation of Gc, so we can use these orientations

to partition the set of chronological orderings of G and we obtain

the same result. Furthermore, with a little reflection, it can be

seen that each VR(i) and VL(i) corresponds to exactly one of the

vertex-disjoint cliques of (Pn , Pn i Pn \r) as described in Lemma

n n
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2.4.2 in Chapter 2. (The particular transitive orientation of G C

chosen in Algorithm 2.3 forces the orientation of all the edges in T'.

The remaining choices are exactly those described above.)

Thus for each consecutive ones form M of the matrix for G (or

for each transitive orientation of Gc), it is easy to count the number

of chronological orderings which arise. Furthermo~re, by Booth and

Lueker [6, pp. 367-372] (or Golumbic [13, pp. 73-78]), it is easy to

count how many consecutive ones forms G'ns matrix has (or how many

transitive orientations Gchas). Unfortunately, these do not combine

to give us an efficient way of determining the total number of

chronological orderings of G, because the consecutive ones forms

may have varying numbers of associated chronological orderings. That

is, 11(M(i))[ must be computed individually for each i. Since the

number of consecutive ones forms of the matrix of G can easily be of

size exponential in IVI, this does not lead to a polynomial-time

algorithm for determining the total.

The method of counting used in Chapter 4 does not seem to help

here either. We are able to determine the number of chronological

orderings, given which edges indicate inclusion, but, of course, there

are an exponential number of ways we can choose a subset of the

edges to indicate inclusion.

It is possible that Problem 6.1 is #P-complete (for definitions

and some results in this area, see Garey and Johnson [10), or Valiant

[35]), but the author has not been able to prove or disprove this

conjecture.



CHAPTER 7: SPECIAL REPRESENTATIONS

7.1 Representations containing Given Points

Once again, let us return to our example from archaeology.

Suppose that, due to the availability of additional information, it

could be precisely determined when some of the graves were dug. Then

it seems reasonable that the points in time at which the graves had

been dug are contained in all the intervals related to the artifacts

found in those graves. This leads to several interesting questions

concerning interval graphs.

Problem 7.1

Instance: Graph G = (V, E), a set of real numbers {Pl' P2""-' Pm)

for which P1 < P2 < - < pm' and a collection

{V1,.., Vm } of subsets of V.

Question: Does G have an interval representation {IfI.., In}

such that, for i = . m, Pi c F1 I?

Theorem 7.2

G has a representation as desired in Problem 7.1 iff the following

are true:

(a) C4  is not an induced subgraph of G,

(b) for k = I,..., m, the subgraph of G induced by Vk is

a clique,

(c) Gc has a transitive orientation Tc such that

Ec TC.{viv j e : vi C V k , vjEV,,, for some k < 1} r-
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Proof: The necessity of (a) and (b) is evident. If G has the

desired representation, then we can give G c the transitive orientation

T C defined by

vivj ecT c <=> 1, I J,

Furthermore, if vi V ks Vj 4EVk v iVi E EC and k< L, then

I. < I . since Pk < Pk Pk ' li. Pk ' Ii and I, n I 0.Thus
c

vi vi c T

To prove sufficiency, we note that conditions (a) and (c) imply,

by means of Theorem 1.3, that G is an interval graph with a

representation V' = {IjI., In) of closed intervals such that

V1Vj FE T c <=> 1! < E. Let V. = (ai bj foJ n. Without

loss of generality, V' e 1(G), i.e., A f ail bj .1 = i.. ni

is a set of 2n distinct real numbers.

Let I'(Vk) denote the set {E3: vj£Vl Because each Vk

generates a clique, Helly's Theorem (see Danzer, Griinbaum, and Klee

[73) states that n 1'(Vk) 0 0. Let wk denote the left endpoint of

n I'(V) and let

E= min {(x-yj: x, ycA and x t y} > 0.

That is, c is the distance between the two closest members of A.

We now define a set of points {p.*.. p'} from which we will

derive the desired representation of G. Let pi w= For I1 i m,

inductively define
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p! =max {wi, Pi-I + e/mi.

Then Pi < Pi < ... Pro

Lemma 7.2.1 For all i, p! c n I(Vi).

Proof: It is true for i = 1. Let I > 1 and assume P! 4 n I'(Vi).

Then, by the definition of wi, Pi = P!-I + e/m > wi and hence p!
is completely to the right (along the real line) of some It l'(Vi),

I'

i.e., Vj < {p!}.

Since pj Wl' there exists some k > 0 such that

p='i- + C/M = ... i-k + kc/m = w + kc/m.PI I- IPI-k = i-k

Now, by the definition of C, Wik - max {xcA: x < p and so
b < wi-k" But wi-k is the left endpoint of some interval I C

I'(Vi-k), which means that Ii < I;. But this contradicts the fact

that vj E Vi , vs e Vik , vivs c Ec and I > i-k, which implies

that VsV j  T C y property (c), and hence I < It. Therefore,
s i

p! c n I(V i) and the lemma is proved.

We can now form the desired representation as follows (see Figure

7.1). Translate and dilate that part of each interval in V between

p! and pi!+l so that it stretches from pi to Pi+l (i.e.,

affinely transform [p!, p4.l
] onto [pis pi+l ]), for all i. The

resulting representation {I,..., In! has the desired property. 0
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V 1 3  PI = 5 V1 = {v 1, v2)

P2 = 7 V2 = {v2}

2 P3 = 9 V3 = {v2, v31
G

vj 0-->- V3

Ov2

An orientation Tc of Gc

I= [0,2) 1 = 14I = [3,5]

p 30 . I 5
pj l l ~ =

I I

4 pl-s 6 p2 !7 8 9 1 l0 11 12

I1 = [4,8] 12 = [5,10 ] 13 = [9 ,11)

Figure 7.1: An example for Theorem 7.2.
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Corollary 7.3

G has a representation as desired in Problem 7.1 with the added

property that no interval in the representation is properly contained

in another iff the conditions in Theorem 7.2 hold and K,,3  (see

Figure 1.4) is not an induced subgraph of G.

Sketch of proof: If K1,3  is not an induced subgraph of G, then

the initial representation {Ij,..., I } of G can easily be modified

(by stretching some endpoints if necessary) so that there is no proper

containment between any two intervals. The rest of the proof then

follows as in Theorem 7.2. 0

Notice that it is possible for intervals other than those in

I(Vi) to contain pi. The following theorem shows that we can also

determine whether G has a representation in which those and only

those intervals of I(Vi) contain pi.

Problem 7.4

Instance: Graph G = (V, E), a set of real numbers {P1 ,""., Pm) for

which PI < P2 
< ... < pm, and a collection {Vl,..., V.,

of subsets of V.

Question: Does G have a representation II..., I in which

Pi 1. <=> v. C VI?

" .. .. I ll ... . . .. . . . I ' I
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Define G'=(V + (pi: i = 1,..., m}, E + E ) where xy, yx Ep

iff, for some i, x = pi and y c Vi . That is, we enlarge G by

adding m new vertices corresponding to the points {p1,...p m1 . and

we connect each new vertex pi with the vertices in Vi.

Theorem 7.5

G has a representation as desired in Problem 7.4 iff the following

are true:

(a) C4  is not an induced subgraph of G',

(b) For all k, the subgraph of G induced by Vk is a clique,

and

(c) (G')c has a transitive orientation Tc  such that

~ Tc.
{piPj: i < j) c T .

Proof: If Problem 7.4 has a solution in which G is represented by

I,..., In, then G' is represented by the set {I1 ..., 1n , {pl},

...t {pm}}, where vertex pi is represented by the real number pi

(an interval of length 0). Therefore G' is an interval graph and

so, by Theorem 1.3, conditions (a) and (c) hold. Condition (b) is

obvious.

Conversely, suppose conditions (a), (b), (c) are true. Then G'

is an interval graph. In the representation I of G' constructed

by means of Gilmore and Hoffman's procedure 11] using TC, each

vertex Pi is represented by a point pl, which is contained in

exactly the intervals in l(Vi). If we now affinely transform each
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interval [p!, p!+, ] onto the interval [pi, pi+, ], we obtain the

desired representation. 0

Corollary 7.6

G has a representation as desired in Problem 7.4 with the added

property that no interval representing a vertex of G is properly

contained in another iff the conditions of Theorem 7.5 are satisfied

and K1,3 is not an induced subgraph of G.

Proof: The proof is similar to the proof of Corollary 7.3. 0

Using the algorithm described in Chapter 4 for extending the

oriented edges of a mixed graph to a transitive orientation of the

whole graph (Problem 4.11), it is easy to construct an algorithm of

complexity O(IVI 3 + m3) which solves Problems 7.1 and 7.4. The task

of producing a detailed algorithm is left as an exercise for the

reader.

7.2 A Class of Graphs of Interval Count 2

In the preceding section, we characterized those graphs which

have a proper interval representation in which certain intervals

contain specified points. These results cannot easily be extended to

the case in which we desire G to have a unit interval representation,

because in this case, the distances between the pi's become important,

a factor we were able to ignore completely until now.

In this section, we characterize those graphs which have
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representations containing only points and unit intervals. Here we

do not care which points on the line they are. However, a better

framework for Theorem 7.7 below is the subject of interval counts.

Given a finite set J of intervals of the line, let IC(J) be

the number of different size intervals in J. For an interval graph

G, define the interval count of G

IC(G) = min {IC(J): J is a representation of G}.

Thus IC(G) = 1 iff G is a unit interval graph. Leibowitz [23]

has proved some results about interval counts. She showed that for

any interval graph G = (V, E), if G\x (the subgraph of G induced

by V\{x}) has interval count 1, then IC(G) 5 2. She also described

some other classes of graphs with interval count 2.

Theorem 7.7 presents another class. It characterizes those

graphs of interval count 2 or less for which one of the two lengths of

the intervals is 0.

We give a few more definitions, using the notation of Roberts

[28, p. 140] and Scott and Suppes [31, p. 118]. Define an equivalence

relation EQ on the vertices V of a graph G = (V, E) by defining

xEQy iff N(x) % N(y). Thus two vertices are equivalent iff they are

adjacent to exactly the same vertices in V (including themselves).

Let the reduced graph G* of G be the graph obtained by cancelling

this equivalence relation, i.e., the vertices of G* are equivalence

classes of vertices of G and two classes are adjacent if adjacency

holds between the representatives from the two classes.
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In Theorem 7.7, it suffices to restrict our attention to reduced

graphs, because if two vertices are equivalent, they can be represented

by the same interval.

Call a vertex v a simplicial vertex if N(v) generates a

clique in G. Also, for S c V, let E(S) = {xyeE: xcS or ycS}.

Theorem 7.7

Let G = (V, E) be a reduced graph. Then G has a representation in

which all intervals are closed and of length 1 or 0 (i.e., are unit

intervals or points) iff E\E(S) and Ec have orientations 0 and

F, respectively, so that O+F is strongly transitive, where S is

the set of simplicial vertices of V.

Proof: Suppose G has such a representation. Clearly those vertices

represented by points must be in S. Conversely, if any vertex sES

is represented by a unit interval, note that, since vn(s)i 0,

we obtain an equally valid representation by G by representing s

by any one of the points in n Ii. Thus we may assume that the
v.N(s)1

set of vertices represented by points is exactly S.

It is not hard to see that all the unit intervals can be trans-

lated, if necessary, so that all endpoints are distinct, without

changing the intersection properties of the intervals. Furthermore,

each point that represents a vertex in S can be lengthened slightly

to form an interval properly contained in the unit intervals with

which it intersects, so that there are 2n distinct endpoints in the

representation. In this way , we obtain a representation of G in
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I(G) whose associated tournament (V, C+O+F) satisfies the condition

that xy e C iff xy e E and xcS. Thus by Theorem 4.5, we have

proven the necessity of the existence of the orientations 0 and F.

Conversely, suppose E\E(S) and E c have orientations 0 and

F with the properties described. Then by Theorem 4.5, G has a

representation I = {I,.. , In c} I(G) such that I, c I. iff

viv j 6 E and vi c S. (That is, we are defining C = {viv.: Vvi. e E

and vi e S) for use in Theorem 4.5. It is clear that C2 c C and

xy c C => N(x) c N(y) since G is reduced and since S is the set

of simplicial vertices of G.) Now, since all the neighbors of

vi e S are adjacent, no intersections are created or obliterated if

Ii is shrunk to a point for each vi 6 S. All that remains is to

expand or shrink each interval that is not a point into a unit

interval. This can be done without changing any intersections because

no such interval is properly contained in another. The task of

checking all the details is left as an exercise for the reader. 0

We remark that this can be checked algorithmically 
in O(1V13)

steps using the methods of Chapter 4.



CHAPTER 8: INTERVAL EDGE-GRAPHS

In this chapter and Chapter 9, the elements of E will be

unordered pairs {x, y} of distinct vertices. We will still call the

elements of E edges, which hopefully will not cause any confusion.

All graphs are undirected and there are no loops or multiple edges.

Let G - (V, E) be a graph. We construct a new graph G' =

(E, F) called the edge-graph (or line-graph) of G by letting E be

the set of vertices of G' and letting F be the set of all unordered

pairs of (distinct) edges of G which have a common endpoint (see

Figure 8.1).

e e

4 e 3

e4

G = (V, E) G' =(E, F)

Figure 8.1: A graph and its edge-graph.

The following theorem characterizes those graphs whose edge-graphs

are interval graphs. Given a graph G = (V, E), define a simple

circuit of G to be a sequence £vl, v2,..., vm3 of distinct vertices

with m z 3,such that [vi, vi+) c E for I = I,..., m-1 and

vm, vI} E. A simple circuit [v1, ... , Vm] is called long if m z 4.

A cactus is a graph with no long simple circuits.
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Theorem 8.1

Let G' = (E, F) be the edge-graph of G = (V, E). The following are

equivalent:

(a) G' is an interval graph,

(b) G' is a unit interval graph,

(c) G is a cactus which does not contain I nor IV2  (see

Figure 1.1) as (not necessarily induced) subgraphs,

d) G is a cactus in which each component C of G has a

chordless path P with the property that, for each vertex

v in C but not in P, ON(v) consists of exactly one

vertex of P or exactly two adjacent vertices of P.

Before we prove this, we need a lemma.

Lemma 8.1.1 K, 3 is not an induced subgraph of any edge-graph.

Proof of Lemma: Suppose an edge-graph G' = (E, F) of a graph

G = (V, E) has such a subgraph with the "center" vertex labelled v

and the other three vertices labelled v1 , v2, v3. Then v must be

an edge of G which has a common vertex with three other edges in E,

but none of them has a comon vertex with each other. Since v has

only two endpoints, this cannot happen.

Proof of Theorem 8.1: (a) <->(b) By Lemma 8.1.1 above and Theorem 1.4.

(b)->(c) If [vl,..., Vm3, m k 4, is a long simple circuit

in G, then (ivI, v2), {v2 , v3),--, {vm , VI}] is a chordless cycle
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in G', contradicting the fact that G' is an interval graph.

Thus G is a cactus.

If G contains I, then G' must contain IV2 as an induced

subgraph since IV2 is the edge-graph of 1. This contradicts Theorem

1.4. If G contains IV2, then G' must contain V1 (see Figure 1.1)

as an induced subgraph since V1 is the edge-graph of IV2. This again

contradicts Theorem 1.4.

(c)=>(d) Without loss of generality, G is connected. The proof

will be by induction on n = JVJ. Clearly, it is true for n = 1.

Consider the case where n > 1. Let x be any vertex in V such that

G\x (the subgraph of G induced by V\{x}) is connected. Then G\x

has a path with the desired properties. Let P = [vl,..., vk] be

the longest such path.

Note that x is adjacent to at most two vertices of P since

G is a cactus. We'll consider each possibility separately.

CASE 1: x is adjacent to two vertices vi, v. of P. Without

loss of generality, i < j. If j t i+l, then

Ex, vi, vi+i,..., v] isalong simple circuit. Thus x

must be adjacent to vi and vi+ l for some i. The

proof will be complete when we show that x is not

adjacent to any other vertex of G. To show this, we

suppose not, i.e., we suppose some vertex y is adjacent

to x, with y J P. Since G~x is connected, y is

adjacent to some vk in P. Without loss of generality,

k s i. But then [x, y, vk , Vk+l,.., vi , vi+l ] is a
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long simple circuit, a contradiction.

CASE 2: x is adjacent to one vertex v. of P. If ONGx W

{ },then P is the desired path in G. Thus assume

there exists a ycV\P such that {x, y) c E. Since

G\x is connected, {y, v. i E for some vi e P. With-

out loss of generality, j 5 i. If j < i, then

Ey, vi, vj. 1,..., vi, x) is a long simple circuit.

Hence ON G(Y) = {x, vi 1, and ONGWx = {y, vi ). (if

there were another vertex w adjacent to x, then

Ex , vi~, y] would be a long simple circuit.) If

3 5 i 5 k-2, then {v~2  v~1  v 1 v., v X, y}

generates a graph which contains I. Thus i ='l, 2,

k-1, or k. Without loss of generality, i =1 or 2

(see Figure 8.2).

y x

v 
- --

z V

Figure 8.2: Case 2.

LL
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If i = I, then [y, vI, v2,..., Vk] is a longer path

than P with the desired properties, contradicting

the maximality of P in G\x. Thus i = 2. Now if

ON(v,) = {v2 }, then P'= [x, v2 ..., vk) is the desired

path. Therefore, consider the case in which {z, v1}

E for some vertex z t v2. Then {z, v2 } c E by the

maximality of P in G\x. Now if k > 3, then

{x,y,z,vv 2 ,v3 ,v4} generates a graph which contains I.

Hence it must be true that k = 2 or 3. If k = 2,

then [v,, v2, x] is the desired path. If k = 3,

then we claim ON(v 3) = {v2}, in which case [v1 , v2, x]

is still the desired path. But if [w, v3} c E for

some w t v2, then {x,y,z,w, v1, v2,v3 ) generates a

graph which contains I. Thus ON(v3) = {v2 I and

Case 2 is proved.

CASE 3: x is not adjacent to P. Then {x, y} e E for some

vertex y4 P, and {y, vi } c E for some vi C P.

Furthermore, ths is x's only neighbor since any other

neighbor would also have to be adjacent to P, producing

a long simple circuit.

Now y can also be adjacent to v i+, (or equiva-

lently vi-,) in P. We'll consider these possibilities

separately.



Subcase 1: ON(y) ix, vi, v l I (see Figure 8.3). If k a 4, then

i = 1 or k-1 because otherwise xyv io v

generates IV 2.

Figure 8.3: Case 3, Subcase 1.

Thus for any k -a 2, we can assume that i 1. Due to

the maximality of P in G\x and the fact that there

does not exist a vertex z (other than y) such that

ONWz D {v1, v2 ), v I can have no neighbors other than

y and v i* N~ow it is easy to see that P' lx, Y, v2,

is the desired path.

Subcase 2: ON~y) ={x, v } (see Figure 8.4).

v.x

Figure 8.4: Case 3, Subcase 2.
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If 3 : isk-2, then Ix, y, v. vi- 11, v v , vi+2)

generates I. Thus without loss of generality, i = 1 or

2. If i = 1, then Cy, vI, v2 ,..., Vk] is a path that

contradicts the maximality of P in G\x. Thus i = 2.

If ON(vl) = {v2}, then [x, y, v2 ,..., vk3  is the

desired path. If {v, z) c E for some vertex z v2,

then by the maximality of P, {v2, z) e E. In this case,

it must be true that k s 3, since k > 3 implies

that {x, y, z, v1 , v29 v3, v4) generates a graph that

contains I. If k = 2, then Ex, y, v2, V,] is the

desired path. If k = 3, then v3 can have no neighbors

besides v2  (any such vertex w would cause

{x' y, z, , vi, V29 v3} to generate a graph containing

I). Thus [x, y, v29 v1] is the desired path. This

finishes Case 3 and the proof that (c)=>(d).

(d)=>(c) It is clear that there can be no such path P if G

contains I or IV2.

(c)=>(b) G' cannot contain K ,3 as an induced subgraph by

Lenma 8.1.1. G' does not contain IV2 or VI as an induced subgraph

because, if so, then G contains I or IV2. If G' contains IIIn

with n a 4, then G has a long simple circuit. Hence GI has no

induced subgraphs of the form IIIn, in a 4. Thus by Theorem 1.4, G'

is a unit interval graph.

This completes the p.-oof of the theorem. D



CHAPTER 9: SOME NP-COMPLETENESS RESULTS

In this chapter, we use the notation described in the first

paragraph of Chapter 8, i.e., E denotes a set of unordered pairs of

distinct vertices.

For all definitions and background material on NP-completeness,

the reader is referred to Garey and Johnson [10) or Aho et al. [1].

Recall that, according to Theorem 1.2, a graph is an interval

graph iff its maximal clique-vertex incidence matrix has the consecu-

tive ones property. Therefore, if we want to measure how "close" a

graph is to being an interval graph, one way is to measure how "close"

its maximal clique-vertex incidence matrix is to being a matrix with

the consecutive ones property. There are four measures of "closeness"

that are discussed here, each of which leads to an NP-complete

problem. This is also true when "consecutive ones property" is

replaced by "circular ones property". A matrix of O's and l's has

the circular ones property if the rows can be permuted, so that, when

the matrix is rolled into a cylinder that makes the first and last

rows adjacent, all the 1 entries are consecutive in each column.

This is equivalent to requiring that there exist a permutation of the

rows of the matrix so that all the 1 entries or all the 0 entries are

consecutive in each column. For related NP-complete problems, see

Garey and Johnson [10, pp. 229-230].

The four measures of closeness are:

(1) The minimum number of 1 entries that need to be changed to O's

to give the matrix the consecutive ones property.

(2) The minimum number of 0 entries that need to be changed to l's
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to give the .natrix the consecutive ones property.

(3) The minimum number of rows that need to be removed so that the

remaining matrix has the consecutive ones property.

(4) The minimum number of columns that need to be removed so that

the remaining matrix has the consecutive ones property.

Measure (1) corresponds to the following problem:

Consecutive Ones Matrix Diminution (COMD)

Instance: An mxn matrix M of O's and l's and a non-negative

integer K.

Question: Is there a matrix M', obtained from M by changing K

or fewer 1 entries to O's, such that M' has the

consecutive ones property?

Theorem 9.1

COMD is NP-complete.

Proof: A proof requires showing that COMD is in NP and that there is

an NP-complete problem which is polynomially transformable into COMD.

It is easy to see that COMD is in NP because, as was previously

mentioned, there is a linear-time algorithm for checking for the

consecutive ones property.

The remainder of this proof shows that "Hamiltonian Path

Completion" (number [GT34] in Garey and Johnson's book [10]), which

is NP-complete, is polynomially transformable into COMD.
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Hamiltonian Path Completion (HPC)

Instance: Graph G = (V, E) and positive integer

L : Ilv.

Question: Is there a superset E' containing E

such that IE'\EI s L and the graph

G' = (V, E) has a Hamiltonian path?

Given an instance of HPC, we construct the JVJ x JEJ vertex-edge

incidence matrix M of G, where M = (mi) is defined by

i if vertex vi is an endpoint of edge e

mij = otherwise.

Let K = E - IVI+ L+l. This matrix M and integer K specify an

instance of COMD (if JVJ > tEl + L+l, then there is clearly no

Hamiltonian path in any such G').

Claim: The desired superset E' exists for the instance of HPC iff

the desired matrix M' exists for the instance of COMD.

Proof of Claim: If the minimum number of edges we need to add to G'

to give it a Hamiltonian path P is I s L, then G must already

have IVI -L - 1 of the edges connecting the vertices of the path P,

since the total number of such edges is IVI - 1. Now by changing one

I to a 0 in each of the JE( -IVI + l columns of M corresponding

to the edges of E not connecting the vertices in P, we obtain a

matrix M' with the consecutive ones property (we can permute the rows

of M' to correspond to the order of the vertices along P to get M'
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into consecutive ones form).

Conversely, suppose that k -< K is the minimum number of l's

that can be changed to O's in M to give M' the consecutive ones

property. Clearly we need to change at most one I in each column,

since a column contains only two l's. Let F be the set of edges

corresponding to the columns of M in which no I was changed. It is

easy to see that (V, F) can have no vertex of degree 2 3 nor any

simple circuits. Thus it is possible to add JVJ - LF1 - I edges to

G to form a Hamiltonian path which uses all of the edges in F.

Hence the minimum number i of edges that need to be added to G so

that G' has a Hamiltonian path satisfies:

z :s IV - jFj - I

= VI - JEt + k-l (since IFI = tEl - k)

lvI - RE +K-1

-VI - IEI + (lEt - iVI + L+l) - I

L .

This proves the claim and hence the theorem. 0

Corollary 9.2

Circular Ones Matrix Diminution is NP-complete.

Sketch of proof: We can prove that Hamiltonian Circuit Completion

(Gary and Johnson's CGT34]) is polynomially transformable into it by

making minor modifications to the proof above.
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An alternate proof is obtained by noting that, by changing all

the O's to I's and l's to O's, we obtain a polynomial trans-

formation of Circular Ones Matrix Augmentation (mentioned below) into

it. 0

The corresponding problems of Consecutive Ones Matrix Augmentation

and Circular Ones Matrix Augmentation (Garey and Johnson's [SR16])

were proved to be NP-complete by Booth [4, pp. 106-108]. These

correspond to measure (2) of closeness.

The following problem corresponds to measure (3).

Maximum Row Consecutive Ones Matrix (MRCOM)

Instance: An mxn matrix M of O's and l's and a positive integer

K s m.

Question: Does there exist a kxn submatrix M' of M with k : K

such that M' has the consecutive ones property?

The statements of Garey and Johnson [10, p. 229] on this problem

are confusing because their definition of "consecutive ones property"

asks whether the columns can be permuted so that the l's in each row

are consecutive. Problem [SRI4] was not proved to be NP-complete by

Booth [4, p.111] as they describe it. Booth actually proved that
'Maximum Column Consecutive Ones Matrix" (the same problem as MRCOM #

except that it asks for an mxk submatrix with the consecutive ones

property) is NP-complete. This corresponds to measure (4) of closeness.

"Maximum~~~~~~~ ~ 
~ 

~ 
~ 

~ ~ CounCneuieOe.arx"(h aepolma 

R
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We now proceed to prove that MRCOM (or equivalently, [SRl4] in

Garey and Johnson's book) is NP-complete.

Theorem 9.3

MRCOM is NP-complete.

Proof: It is clear that MRCOM is in NP. To finish the proof, we show

that the problem "Induced subgraph which contains only paths" (problem

EGT21] in Garey and Johnson's book), which is NP-complete, is poly-

nomially transformable into MRCOM.

Induced subgraph which contains only paths (ISCOP)

Instance: Graph G = (V, E) and a positive integer

K s IV!.

Question: Is there a subset V' % V with IV'I a K

such that the subgraph G' induced by V'

contains only paths, i.e., G' has no

vertices of degree > 2 and no simple

circuits?

Note: This property qualifies for property n in [GT21] as stated

in Garey and Johnson's book, because this problem is in NP, and this

property holds for arbitrarily large graphs, does not hold for all

graphs, and is hereditary.

Now, given an instance of ISCOP, we construct the vertex-edge

incidence matrix M of G. Then K and M give us an instance

of MRCOM.
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Claim: The desired subset exists for the instance of ISCOP if" the

desired submatrix exists for the instance of MRCOM.

Proof of Claim: Suppose there exists a subset V as desired in

ISCOP. Let M' be the IV'I x IEI submatrix of M whose rows

correspond to the vertices in V. Now rearrange the rows of M' so

that the vertices we encounter as we travel along the paths of G' are

consecutive. This permutation puts M' into a consecutive ones form,

so M' must have the consecutive ones property.

Conversely, suppose that there exists a k x lEt submatrix M'

of M with k z K such that M' has the consecutive ones property.

Consider the subgraph G' of G induced by the vertices of V

corresponding to the rows of M'. Since M' has the consecutive ones

property, it is easy to see that no vertex of G' can have degree

> 2, because the matrix

1 0 0

0 1 0

0 0 1

1 1 1

cannot be a submatrix of M'. G' cannot have any simple circuits for

a similar reason. Thus G' has only paths, which proves the claim

and also the theorem. 0

Corollary 9.4

Maximum Row Circular Ones Matrix is NP-complete.

4100



R-

120

Sketch of proof: By minor modifications of the proof above, we can

show that the following NP-complete problem is polynomially transfor-

mable into it. This problem also corresponds to problem [GT21] in

Garey and Johnson's book.

Induced Subgraph with only paths or a Hamiltonian circuit

Instance: Graph G = (V, E) and a positive integer K s IVI.

Question: Is there a subset V. c V with IVI a K such

that the subgraph induced by V' has no vertex

of degree > 2 and no simple circuits except

possibly a Hamiltonian circuit?

This gives the desired result. 0

Corollary 9.5

The problems proven to be NP-complete in Theorems 9.1 and 9.3 and

Corollaries 9.2 and 9.4 remain NP-complete when restricted to matrices

with at most two I entries in each column.

Proof: This is clear from the proofs of the theorems. 0
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